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Abstract. Motivated by the work of [Mohammadi et al., Mathematics, 2019, 7, 575.], we extend
here Darbo’s fixed point theorem in a Banach space using the combined technique of Wardowski-
Mizoguchi-Takahashi contraction. The existence of solution for a system of integral equations
is provided and an example to support the effectiveness of our results is also given. Our results
generalize and extend some famous comparable obtained results.
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1. INTRODUCTION AND PRELIMINARIES

The first “measure of non-compactness (MNC, for short)” was defined by Kur-
atowski [12], that is, for any bounded set  in a metric space, it is the infimum of
all the numbers € > 0 such that Q can be covered by a finite number of sets with
diameters < €. The Hausdorff measure is another MNC, which is defined as

u(Q)=inf{e>0: QC UL B(x;,ri) i x5, €Q,ri<e(i=1,2,...,n),n € N}.

In the study of infinite systems of differential equations (ISDEs), the MNC plays a
signifying role. In recent times, the MNC has been effectively applied in sequence
spaces and function spaces for variant classes of differential equations. One of the
most applicable results in organizing the existence of solutions of differential equa-
tions, integral equations and integro-differential equations is Darbo’s fixed point the-
orem [10]. The controllability problem of dynamical systems represented by implicit
differential equations (see [3]) is another field in which Darbo’s fixed-point theorem
can be used. Schauder’s fixed point principle [1] and Darbo’s fixed point theorem
[10] are two important results in this study.

For more details on applications of MNC, we refer the reader to [1,2,4-8, 11, 14,

, 17].
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In this paper, first we generalize the Darbo’s fixed point theorem in a Banach space
via Wardowski-Mizoguchi-Takahashi combined contraction and secondly we study
the existence of solution for the following system of integral equations:

Q)
p() = £ (1h(1,p(81)),0(6(1)). [ &(1x.p(6(x)). 0(8(x)) ) )
(1.1)

&
o(t) = £ (1.h(1,0(8()).p(BV)). [~ (1. .0(8(x)).p(6(x)))dx)

where 1 € [0,7].

We gather several concepts which are used throughout the text. We denote by R
the set of real numbers, and R = [0, +<0). Let (B, || - ||) denote a real Banach space.
In addition, let B(p, ) be the closed ball with center p and radius r and B, := B(0, r).
For a nonempty subset Q of B, let Q and Conv(Q) denote the closure and the closed
convex hull of Q, respectively. Let Al By be the collection of all nonempty bounded
subsets of B and X Cy be the family of all relatively compact subsets of ‘B.

Definition 1 ([8]). x: N By — R is called a "measure of noncompactness” in
B if:
1° kery={Q € NBy : x(Q) = 0} is nonempty and kery, C R Cs;
2° QCA=x(Q) <x(A);
3° x(Q) =x(Q):
4° x(Comv(Q)) =x(Q):
5° x(AQ+ (1 =MA) <Ax(Q)+ (1 —A)x(A) forall A € [0, 1];
6° for all sequence {Q, } of closed sets in AL Byy with the reservations Q,+1 C Q,
foralln=1,2,3,---, and li_1>nx(Qy) =0,then Q. =N"_,Q, # .

2. MAIN RESULTS
Recall the Mizoguchi-Takahashi mapping.
Definition 2 ([13]). £: (0,00) — [0, 1) with the restriction limsup¥(w) < 1, for

o—tt

any t > 0 is called a Mizoguchi-Takahashi (MT) mapping. We denote this class by
M—T.
Let IT be the collection of all maps 7: [0,00) — [0,00) so that
(1) ®(n,) — 0 if and only if N, — O for any sequence {n,} in [0,c0);
(2) mis a nondecreasing mapping.
In this paper, some enlargements of Darbo’s fixed point theorem via Wardowski type
Mizoguchi-Takahashi’s contractions have been obtained. Moreover, we provide an

application for a system of functional integral equations.
Let A be the family of all functions I': (0,e0) — R so that:

(I'y) T is continuous and increasing;
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(T) lim 1, = 1iff lim T'(1,) = 0 for all {1,} C (0, o).
n—soo n—soo

Note that from (I'1) and (I'2), we have I'(1) = 0. Some examples of elements in A
are as follows:

(i) T1(1) = In(v),
(i) To()) =In(1—1 +1),
(iii) T3(1) = = + 1,
(iv) Ts(1) = -1 +1.
Here and afterwards we take C as a nonempty, bounded, closed and convex subset of
a Banach space B and G: C — C a continuous operator.

Theorem 1. Let

[(n(x(G(Q)))) <T(E(n(x(Q)))) +T(n(x(Q)))

forall Q CCwithy(Q) #0and x(G(Q)) #OwhereT' € A, Le M — T, n € Iland
X is an arbitrary MNC. Then G has at least one fixed point in C.

Proof. Let {C,} be defined by Cy = C and C,,;1 = Conv(G(C,)) for all n € N.

Assume that there exists an integer N € N such that (Cy) = 0. Then Cy is relat-
ively compact and so according to the Schauder Theorem G admits a fixed point. So,
let %(C,) > 0 for each n € N.

Obviously, {C, }ren is a sequence of nonempty, bounded, closed and convex sets
such that

Co2C2---2C, 2C1.

On the other hand

L(n(x(Cot1))) = T(r(X(G(G)))) < T(R(R(X(Ca))) +T((x(Ca))),  2.1)
foreachn e N.

According to the properties of measure of noncompactness 7, and the properties of
function m, {n(x(C,)} is a positive decreasing and bounded below sequence of real
numbers.

Thus, {(%(Cy) }nen is a convergent sequence. Suppose that r}g{}o n(x(Cn)) =r.

We prove that r = 0. Suppose to the contrary that r > 0. Taking the upper limit in
(2.1) when n — oo, we obtain that

I'(r) <T(limsupk(n(x(Cy)))) +T(r) < I'(r),

n—oo
which is a contradiction. So, lim (% (C,)) =r = 0.
n—roo

Therefore lim,, . X (C,) = 0. According to principle (6°) of Definition 1 we derive
that the set C. = ﬂ C, is a nonempty, closed and convex set and it is invariant under

n=1
G and belongs to Kery. Then, in the light of the Schauder Theorem G possesses a
fixed point. O



910 B. MOHAMMADI, M. MURSALEEN, AND V. PARVANEH

Taking I'(1) = In(1) in Theorem 1, we have
Corollary 1. Let

1(x(G(Q))) < L(n(x(Q))m(x(Q)) 2.2)

where Q C C with x(Q) # 0 and 4(G(Q)) #0, L€ M —T, m € Il and ¥ is an
arbitrary MNC. Then G possesses at least one fixed point in C.

Taking I'(1) = — % + 1 and if 7 be the identity function in Theorem 1, we have:

Corollary 2. Let
£(x(Q)x(Q)

where Q C C with x(Q) # 0 and 4 (G(Q)) #0, £ € M —T and ¥, is an arbitrary
MNC. Then G has at least one fixed point in C.

(2.3)

3. COUPLED FIXED POINT

Definition 3 ([0]). The ordered pair (p,o) € 9B is called a coupled fixed point of
amapping G : B xB — B if G(p,0) =p and G(0,p) =0.

Theorem 2 ([8]). Let X1,X2,---,Xn be measures of noncompactness in Banach
spaces B1,B,, ..., B, respectively, and let G: [0,00)" — [0,0) be a convex map-
ping with the condition G(p1,...,pn) =0 if and only if p; =0 foralli=1,2,...,n.
Then

X(Q)=G(x1(Q):%2(Q), -, Xa(Q)),

is a measure of noncompactness in By X By X ... x B, where Q; is the natural
projection of Q into B, foralli=1,2,...,n.

Now, let I" be a subadditive mapping. As in the previous section, let C be a
nonempty, bounded, closed and convex subset of a Banach space 8 and G: C xC —
C be a continuous function. Then we have the following results.

Theorem 3. Let

P(R((G(Q x @)))) < 5 [PEER(Q) +2(@)) + T (K@) +1(2)))]
3.1

for all subsets Qy, Q of C with X(G(Q x @)) # 0 and x(Qy) or x(Q) # 0, where
FeA £eM—T,nelandy is an arbitrary MNC. Then G has at least a coupled

fixed point.
Proof. Define é: C? — C? by

G(p,0) =(G(p,0),G(0,p)).

Clearly, é is continuous.
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Let Q C C? be a nonempty subset. Evidently, X(Q) = x(Q) +x(Q) is a (MNC)
[8], where Q; and @, are the natural projections of Q into 8. From (3.1) we have

P(r((G(Q)) = T(THUG(Q x @) x G(Q@x Q)

=1(R(x(G(Q x @) <g<Qz><Q]>>>)

< 5 [FEmr@) + (@) +Tra@) +1(@)]
+5 [P (@) +T(R0(Q) +2(Q)]

<r(ErQ ))) +T(m(x(Q) + (@)

r(m(x(@))) +r( Q).

Now, according to Theorem 1 we derive that é admits at least a fixed point which
yields that G possesses at least a coupled fixed point. g

Theorem 4. Suppose that

I(n(1(G(Q x @))) ) <T(E(r(max{x(Q),x(Q)})) +T(v(max{x(Q). 1(@)})
3.2)

for all subsets Qy, Q of C with X(G(Q x Q)) # 0 and x(Qy) or x(Q) # 0, where
'€ A isamapping, £. € M — T, n € Ilis also a mapping and Y is an arbitrary MNC.

Then G has at least a coupled fixed point.
Proof. Define the mapping é: C? — C% by

G(p.o) = (G(p,0), G(o.p)).

It is clear that G is continuous. Clearly, %(Q) = max{}(Q),x(Q)} is an MNC,
where Q; and @ denote the natural projections of Q into B. Let Q C C2 be a
nonempty subset. From (3.2) we obtain that

r(z(@(G(Q)) =T(7EG(Q x @) x G(@x Q)
=1 (n(max{x(6(Q x @)).x(§(Q x @)})
= max {T(7(1(G(Q x @), T (=((6(@ x Q)))) }
< (E(r(max{x(Q)1(@)})) + T (r(max{x(Q)1(@)})
=T (E@EQ))) +T(=(Q)).

Theorem 1 deduces that é has at least a fixed point and so, G has at least a coupled
fixed point. O
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4. APPLICATION

Now, we study the existence of solutions for the following system of equations:

Q)
p() = £ (1h(1,p(0(1)),0(0(1). [ &(1x.p(B(x)). 0(8(x)) ) )
(4.1)
&)
o(t) = £ (1.h(1,0(8()).p(BV)), [~ (1. x,0(8(x)).p(0(x)) ) d)
in the space C([0,T]) consisting of all bounded and continuous real functions p on

[0, 7] with |[p|| = sup{[p(1)[: 0 <1< T}.
The modulus of the continuity of p € C([0,T]) is defined by

o(p,e) =sup{|p(1) —p(k)|: 1,k € [0,T], [t —x| < e}.
Let
o(Q, &) =sup{o(p,e): p € Q},
@(Q) = lim(Q, ).

It is well known that the above function is a measure of noncompactness in the space

Q=C([0,T]).
Theorem 5. Suppose that:

(i) 0,C: [0,T] — [0, T] are continuous functions,
(ii) The functions f,h: [0,T] x R? — R are continuous and

L(lf(,p1,p2) = f(1,01,62)[) < T'(£(max{[p; — 01}, |p2 — 62[}))
+(max{[p; —o1],|p2 —02[})
and
|h(11,p1,p2) —h(12,01,02)| < max{[y; —w|,|p1 —o1],|p2 — 02|},

forall\y,\, € 10,T] and p1,p2,01,62 €R,
(iii) M :=sup{|f(1,0,0)| :1 € [0,T]} and N := sup{|h(1,0,0)| : 1 € [0, T]},
(iv) g: [0,T] x [0,T] x R? — R is bounded and continuous and

&)

Gi=sup{| [ s(t,x,p(8(x),0(0()dx]| LK € [0,7],p.0,€ C(10,T) ],
0

(v) There exists a positive solution ry to the inequality

I [C(E(max{r+N,G})) + [(max{r+N,G})| + M < .

Then the system of integral equations (4.1) has at least one solution in the space

(c((o,]))*.
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Proof. Let
G: C([0,T]) x ([0, T]) — C([0,T])
be defined by

6(p.0)(0) = £ (LH(.p(00)).0(6W)), [ 5(1xp(0(9).0(6(0))ax). 42)

We observe that the function G is continuous. Applying the assumptions (i) — (iv)
we have

|G(p.0)(0)
< ‘f(hh(hP(G(I)),G(e(l))% /

0

@
2(1,%,p(8(x)), 5(8(K)))dx) — £(1,0,0) ‘ n ( £(1,0,0) ]

<r! F( max{‘h 1,p(0 ‘ ‘/ g(1,x,p(6 ))dK’}))

+F(max{'h 1,p(0 ‘ ‘/ 2(L,x,p(0 ))dK’}) +‘f(1,0,0)‘

<r!

I (k(max{max{|p(6(1))], o(6())|} + |A(1,0.0) .G} )

+ T max{max{[p(6(1)) |, |5(0(1) |} +[4(1,0.0)|,G} )

+ ‘f(l,0,0)‘

<1 T (E(max{max{||p]l, o]} + N, G} ) + T max{max{|lx|, [[y][} + N, G} ) | +M

Therefore,
1G(p,0)|| < T~ [T(k(max{max{|p||, ||s||} +N,G}))
+ I'(max{max{||p[], o[} +N,G})| + M. (4.3)

Due to inequality (4.3) and using (v), the function G maps (B,,)? into B,,.

For the proof of continuity of G on Bro we refer the reader to [16].

Let Q and @ are nonempty and bounded subsets of B,,, and assume that € > 0
is an arbitrary constant. Let 11,1, € [0,T], with |t; — 12| <€ and {(11) < {(12) and
(p,0) € Q X Q. Then we have

1G(p.0)(12) ~ G(p.0) (1) (4.4
e
<[ (121002000020 0012, [ g1, p10(), 01669

()
—f(lz,h(ll7P(9(11))70(9(l1)))7/0 8(12,%,p(6(k)),5(8(x)))dx)|
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E(r)
+|f(12,h(11,p(e(u)),c(e(u))),/o 8(12,%,p(6(x)),05(8(x)))dx)

(0 h01p001))00)) [ 12, p(8().0(6(x)) )|
U a0, 0(00), 0001, [ 8l 5.p(6(6)). 080
(0 h01,(00), 000, [ gl p(8(),0(6(x)) )
U (1m0 p(01)00))) [ 01,5, p(6(x)). (005 )

C(u)
= (,h(u,p(8(1)),0(0(u))), [ glu.k.p(6(K), 0(8(x)) )
<07 (D(E({IA(2.p(8(12)). 6(6(12)) — hlu1. p(8(u)). S(B(1))) }) )
+r({\h<tz p(B(12)). c<e<tz>>>—h<u p(B(11)),5(B(1))I}))

=(f.€) +F_1 F(L ‘/ g(11,%,p(0 (Q(K)))d‘()))

r\/” (11:%,9(6(). (006 ) Km
\/ ™ e(u1.%.p(0(19).5(6(19)) — s(12.x.p(610)) 5(6())) )

+r(\ / [8(11,%,p(8(K)), 5(8(K))) — g(12, %, p(B(K)), 5 (8(x)))|dx| )|
<1 (1(E(max{ho —ul,Ip(8(12)) — p(6(11))] [5(B(12)) — (8(u)))I}))
(max{ru ul.1p(8(12)) ~ p(8(11))|,o(8(12)) — 5(B())I}) )
o7+ [(0,0060)) #0000
e i) )]

where
o(E,e) = sup{[{(2) —C(u)| : 1,1 €[0,T], [ —u[ < e},
Cr =sup{(1) : 1€ [0, T},
Uy, = sup{|g(t,1,u1,12)| : 1 € [0, T],% € [0,Cr], u1, 12 € [—70,70]},

a: CTsup{’g(l,K,‘Ul,‘Uzﬂ e [OvT]7K € [07§T]7 M1, U2 S [_r07r0]}7
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H= SUP{‘h(lv,UluUZ)’ e [O,T],‘Lll,‘l,lz € [—7‘0,}’0]},
O)ro,a(fvg) - Sup{]f(lz,,u,z) _f(llvl'l?Z)’ e [OvT]a
|12 _11’ <& pue [_H7H]7 zZ€ [_677]}
and

(D”O(g7€> = sup{‘g(lsznulnuZ) _g(ll,K,,U],,Uz)’ e [07T}7
L —u| <& u,m € [~ry,r),x € [0,ir]}.

Since (p,o) was an arbitrary element of Q; X @, in (4.4), we have
o(G(Q x @),&) <T'[[(£(max{e, 0(p.8), 0(c.6)}))
+T(max{e, o(p,), 0(0,)}) | + 0, 5(1.¢)
+1 [M(2(U,0(G8) ) +T(U0(C8))]
+T [F(L(CT(‘)ro (g,S))) +F(€Twro(g,8))]

Moreover, in the light of the uniform continuity of the functions f and g on
[OvT] X [_H7H] x [_676]
and
[O,T] X [07 CT] X [_FOJO} X [_r077'0]
respectively, ®, 5(f,€) — 0 and ®,,(g,€) — 0, as € — 0. Also, because of the
uniform continuity of £ on [0, 7], ®({,€) — 0, as € — 0.
Now, this remarks and the above inequality via taking the sup imply that

0(G(Q x @).e) <T' |F(E(max{w(Q,8).0(Q.£)}))
+F<max{m(Q],s),m(Q2,s)})]

which by tending € — 0 and using the continuity of . implies that
00(6(Q x @) T[T (E(max{on(Q), w0(Q)}))
+T(max{oo(Q),o0(Q@)}) |

Therefore,

F(mo(g(Q] X Qz))> < F(L(maX{O)o(Ql),O)o(Qz)}))

+F<max{0)o(Q1)7m0(@)}).

Thus, Theorem 4 yields that the operator G has a coupled fixed point. Thus, the
system (4.1) has at least one solution in (C([0,T]))?. O



916 B. MOHAMMADI, M. MURSALEEN, AND V. PARVANEH

5. EXAMPLE
Example 1. Let:
( —(1+x) h2 X —|—(52
L g g f (()< ()K)) ()
— 1, 1 1
P(l)— 7€ +21+%_’_M+21 se (H_K)sechz( (K)+62( ))d
+Jo (202() +(x)) b
—(1+x) 2 2
L aprsy e (G £p () 4y
0(1)—le—12+l 3+ 3 4= e(20%(K)+p(x))
7 211 tanh(p(+o(t) T 2 —(K) gp g2 2 :
o § o el 1 g T eel0(9-+0%06) 1

(20 () +p(x))
(5.1)

The above system is a case of (4.1) with

G(L) =1, C(l) = lza te [07 1]7
f(lapac) = %e_lz +5

e~ W¥sech?(p +6?)

and

1 tanh(p+o
h(l7p76) = 3+(§)

Also, take L.(1) = % To prove the existence of a solution for this system, we should
survey the conditions (i)-(v) of Theorem 5.

Condition (i) is clearly evident.

Now

[\t — .|  |tanh(p+ o) —tanh(u+v)|
_l’_
3 3
< u—1
- 3
§max{|11—12|,|p*u|7\G*V’}

‘h<117p70> _h(lz,l/t,v)’ <

1
+5(lp—ul+lo—v)

and
p o u %
T4p 110 1+ua 1tv
lp—ul o —V|
(I+p)(1+u) (1+4+0)(1+v)

‘f(l7p76)_f(l7uav)’: | |

N = N =

< 5 ( )
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P —ul o —v]
1+1p—ul  1+1jo—y
max{|p —u|,|c —v[}
~ 1+ ymax{|p —ul,|o—v[}

1
<5 )

Therefore,
—1 —1 —1
7p.0)—fan)] T2 ma{lo—ulfo )
Taking I'(1) = %1 + 1, we have

1.

T(E(max{|p—ul,|lo—v[})) =T(3) = -
Thus,

L(|f(1,p,0) = f(L,u,v)|) < T(k(max{|p —ul,|c —v[})) + [(max{|p —ul,|c —v[}).
We can find that f satisfies condition (ii) of Theorem 5. Also,
1

M = sup{|f(1,0,0)| : 1 €[0,1]} = sup{;e_12 1e 0,1} = 7

and

N = sup{|h(1,0,0) : 1€ [0, 1]} = sup{%eﬂ ef0,1]} = %

Moreover, g is continuous on [0, 1] x [0, 1] x R
On the other hand,

12
G= sup{/ g(1,%,p,0)dx:1€[0,1],x € [0,1%]}
0

l2
< sup{| /0 e g s [0, 1],k € [0,12]}

2

<sup{le*(1—e")|:1€[0,1]} < 1.
Furthermore, for r =1,

I C(E(max{r+N,G})) +(max{r +N,G})| + M

< Tk (max {1+ L, 13)) + Dlmax {1+ 1 1)) + ]

7
=T PECH) + T+ 5 =T 0C) + T +

7

111 1.1 6 1

It 4=t =t =1=r
5 31+ g lt7=7%3 4

Consequently, all the reservations of Theorem 5 are fulfilled. Hence, the system (5.1)
has at least one solution in (C([0,1]))2.
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