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Abstract. In this paper the classical nabla and delta Hardy-Copson type inequalities, which are
derived for £ > 1, are complemented to the new case { < 0. These complements have exactly
the same forms as the aforementioned classical inequalities except that the exponent { is not
greater than one but it is less than zero. The obtained inequalities are not only novel but also
unify the continuous and discrete cases for which the case { < 0 has not been considered so far
either. Moreover one of the applications of Hardy-Copson type inequalities, which is to find
nonoscillation criteria for the half linear differential/dynamic/difference equations, are presented
by using complementary delta Hardy-Copson type inequalities.
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1. INTRODUCTION

The theory of inequalities containing series or integrals has been given a great
importance due to their effective usage in differential equations and their applica-
tions after the celebrated discrete and continuous inequalities that Hardy have been
obtained. In 1920, when Hardy [24] tried to find a simple and elementary proof of
Hilbert’s inequality [32]
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where a,,,c, > 0 and Z a2 and Z ¢2 are convergent, he showed the following
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pioneering discrete inequality
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and pioneering continuous inequality for a nonnegative function I' and for a real

constant { > 1, as
/Ooo (;/Olr(s)ds>cdt < (&)c/omﬂ(t)d[’ (12)

where / Fc(t)dt < oo, In fact, Hardy only stated inequality (1.2) in [24] but did
0
not prove it. After that in 1925, the proof of inequality (1.2), which depends on the
calculus of variations, was shown by Hardy in [25].
¢
The constant (CC 1) that appears in the above inequalities also has been found as

the best possible one, since if it is replaced by a smaller constant then inequalities
(1.1) and (1.2) is not fulfilled anymore for the involved sequences and functions,
respectively.

Then Hardy et al. [26, Theorem 330] developed inequality (1.2) and derived the
following integral inequality for a nonnegative function I'" as

/o ‘Pfe —' _1‘/ ,eg C>1, (1.3)

t
/ T(s)ds, if0> 1,
OOO

where ¥(1) =
I[(s)ds, if6<1.

The exhibition 0% the results which contain the improvements, generalizations and
applications of the discrete and continuous Hardy inequalities can be found in the
books [8,26,32,33,37] and references therein.

Since various generalizations and numerous variants of the discrete Hardy inequal-
ity (1.1) exist in the literature, all of which can not be covered here, we only focus on
the extensions which have been established by Copson [16, Theorem 1.1, Theorem
2.1]. This is why we name our inequalities as Hardy-Copson type inequalities. The
discrete Hardy inequality (1.1) or Copson’s discrete inequalities were generalized in
[10,15,20,34-36] and references therein.

Similar to the discrete Hardy inequality (1.1), the continuous versions (1.2) or (1.3)
have attracted many mathematicians’ interests and expansions of these continuous
inequalities have appeared in the literature. The first continuous refinements were
obtained by Copson [17, Theorem 1, Theorem 3] and after these results many papers
devoted to continuous analogues and continuous improvements of the discrete Hardy-
Copson inequalities, see [9,27,38,40,42].

Following the development of the time scale concept [7, 11, 12,21, 22], the ana-
lysis of dynamic inequalities have become a popular research area and most clas-
sical inequalities have been extended to an arbitrary time scale. The surveys [1, 52]
and the monograph [4] can be used to see these extended dynamic inequalities for
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delta approach. Although the nabla dynamic inequalities are less attractive com-
pared to the delta ones, some of the nabla dynamic inequalities can be found in
[ b b ’ b b 2 ]‘

The growing interest to Hardy-Copson type inequalities take place in the time
scale calculus as well and delta unifications of these inequalities are established in

the books [5] and in the articles [3,19,43,44,46,47,50,51,55] for { > 1 whereas their
reverse versions can be found in [18,45,46,48] for 0 < { < 1. The nabla unifications
of Hardy-Copson type inequalities for { > 1 can be seen in [28,29].

All of the abovementioned articles contain Hardy-Copson type inequalities ob-
tained for { > 1. For our further purposes, we will show the delta and nabla Hardy-
Copson type inequalities [28, 5 1] established for { > 1 and used in the sequel.

The delta time scale generalizations of the foregoing inequalities in an arbitrary
time scale are given in the next four theorems for nonnegative functions z and 4 and
for

oo ! _ t — o
G(1) = / 2(s)As, H() = / 2(s)h(s)As, G(t) = / 2(s)As, H(r) = / 2(s)h(s)As.
t a a t (14)
A delta unification of the discrete inequality obtained by Bennett [10, Corollary 5]
or Leindler [35, Proposition 3] and continuous inequality obtained by Saker et al.
[51, Corollary 2.2] or Kayar and Kaymakgalan [28, Remark 3.22] is stated as follows.

Theorem 1 ([51]). Let z,h,G and H be defined as in (1.4). If L >1, n>0,
n-+0 <1, then we have

c><,z(t)[H6(t)]Tl+C n+¢ ¢ OQZ(Z‘)]’LC(Z‘)[HG(t)]n
[ <[] [ e s 09

The following theorem establishes a delta unification of the discrete inequality
obtained by Copson [16, Theorem 2.1] or Bennett [10, Corollary 4] or Leindler [35,
Proposition 2] and its continuous counterpart obtained by Copson [17, Theorem 3]
as well as its continuous generalization obtained in [40, Theorem 1] or [42, Theorem
3]. Moreover the continuous inequality (1.3) obtained by Hardy et al. [26, Theroem
330] is unified.

Theorem 2 ([51]). Let z,h,G and H be defined as in (1.4). If{>1, n>0,
n+6 < 1, then we have

© (£ H (£)N+5 C (oo SATH (M

[T, [ e ) POROEn,
a [G(n)n+e I=m=8] Ja [G'(r)]n+o-C

A delta unification of the discrete inequality obtained by Bennett [10, Corollary

6] or Leindler [35, Proposition 4] and continuous inequality obtained by Saker et al.
[51, Corollary 2.3] or Kayar and Kaymakgalan [28, Remark 3.11] is stated as follows.
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Theorem 3 ([51]). Let z,h,G and H be defined as in (1.4). For
ifC>1,n1>0,N+0> 1, then we have

wz(t)[ﬁ(t)]ﬂﬂ 4 Nn+¢ e “z(t)h‘;(t)[ﬁ(t)}n
/a W&g [Kn+e 1n+9—1] /a FOLLE: At. (1.7

The following theorem establishes a delta unification of the discrete inequality
obtained by Hardy [24, Theroem B] as inequality (2) and the discrete inequality ob-
tained by Copson [ 16, Theorem 1.1] or Bennett [ 10, Corollary 3] or Leindler [35, Pro-
position 1] and their continuous counterparts obtained by Hardy [24, Theroem B] as
inequality (4) and Hardy et al. [26, Theroem 330] and Copson [17, Theorem 1] as
well as their continuous generalizations obtained in [40, Theorem 1] or [42, Theorem
1].

_ t 1
Theorem 4 ([28,51]). Let z,h,G and H be defined as in (1.4). For ((:6(()) > 7 >0,
t

if>1,n1>0,n+0 > 1, then we have

= 2(1)[HO ()] "+ Lon+C 1 ek [HO ()
/a [(}c’(th’AtS[Jn+e 1n+9—1} /a [700)]%9_@ At. (1.8)

There are more results about delta Hardy-Copson type inequalities different than
the previous ones. For example, in [46] it seems that delta Hardy-Copson type in-
equalities were obtained for { > 1 as well as for 0 < { < 1 and { < 0. However
there are many errors in this article even for the case > 1. Therefore the obtained
inequalities are not correct in [46]. Another result was given in [3] by using a dif-
ferent method in the proof of the theorems. In this article, it seems that delta Hardy-
Copson type inequalities were obtained for { > 1 as well as 0 < £ < 1. However for
0 < £ < 1, since the obtained inequalities are in reverse directions of those derived for
the case { > 1, they can not be considered as new delta Hardy-Copson type inequal-
ities. In fact, they already have been established in [48] as delta Bennett-Leindler
type inequalities. Therefore for { < 0, finding delta Hardy-Copson type inequalities
by preserving the directions of the inequalities established for { > 1 is still an open

problem.
The construction of nabla time scale calculus, which has been introduced simul-
taneously with delta time scale calculus, can be found in [7, 11,12,21,22].

Contrary to delta case, nabla Hardy-Copson type inequalities have not been con-
sidered until 2021. The first results of this case obtained by Kayar and Kaymakgalan
in [28].

The nabla time scale generalizations of the foregoing inequalities in an arbitrary
time scale are given in the next four theorems for nonnegative functions z and 4 and
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for

. - (1.9)
G() = / «(s)Vs, H(t)= / 2()h(s)Vs.

A nabla unification of the discrete inequality obtained by Bennett [10, Corollary
5] or Leindler [35, Proposition 3] and continuous inequality obtained by Saker et al.
[51, Corollary 2.2] or Kayar and Kaymakgalan [28, Remark 3.22] is stated as follows.

Theorem 5 ([28]). Let z,h,G and H be defined as in (1.9). If { > 1, 1 >0 and
N+ 0 < 1 are real constants, then we have

wz(’)[H(t)]nJrC n+¢ g Wz(z)hC(t)[H(t)]n
/a [GP(¢)|n+0 Vi < [1 —ﬂ—e] /a [Gp(t)]nHM Vr. (1.10)

The following theorem establishes a nabla unification of the discrete inequality
obtained by Copson [16, Theorem 2.1] or Bennett [10, Corollary 4] or Leindler [35,
Proposition 2] and its continuous counterpart obtained by Copson [17, Theorem 3]
as well as its continuous generalization obtained in [40, Theorem 1] or [42, Theorem
3]. Moreover the continuous inequality (1.3) obtained by Hardy et al. [26, Theroem
330] is unified.

Theorem 6 ([28]). Let z,h,G and H be defined as in (1.9). If¢>1,m>0and
N+ 0 < 1 are real constants, then we have

= (1) [H' (1)]"+ n+¢ 15 20RO E ()"
/a [G(r)]n+ W[l—n—e]/a G D

A nabla unification of the discrete inequality obtained by Bennett [10, Corollary
6] or Leindler [35, Proposition 4] and continuous inequality obtained by Saker et al.
[51, Corollary 2.3] or Kayar and Kaymakgalan [28, Remark 3.11] is stated as follows.

Theorem 7 ([28]). Let z,h,G and H be defined as in (1.9). Suppose that there

GP(t
G((t)) <M fort € (a,o)r. If{>1,M>0andn+6 > 1are
real constants, then we have
o 7P (1)1n+¢ C foo S EP (AN
[EEONE G, fyprsoes 1S | FHIEOTONG,
a [GP(M n+6—1] Jo  [GP(r)]nTOC
The following theorem establishes a nabla unification of the discrete inequality
obtained by Hardy [24, Theroem B] as inequality (2) and the discrete inequality
obtained by Copson [16, Theorem 1.1] or Bennett [10, Corollary 3] or Leindler [35,
Proposition 1] and their continuous counterparts obtained by Hardy [24, Theroem B]
as inequality (4) and Hardy et al. [26, Theroem 330] and Copson [17, Theorem 1] as
well their continuous generalizations obtained in [40, Theorem 1] or [42, Theorem
1].

exists M > 0 such that
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Theorem 8 ([28]). Let z,h,G and H be defined as in (1.9). Suppose that there
G(t)

exists L > 0 such that =
G (t

<Lforte (a,o)r. If{>1,N>0andn+6 > 1are

real constants, then we have

= 2(t)[H (1) I R N OTROIZO
[ e = [ bes] [ gapee v 0

The reason Hardy-Copson type inequalities have generalized in many directions
is that they have wide applications in operator theory and geometry [8,33], in partial
differential equations, such as Fokker-Planck equations and equations modelling fluid
dynamics [37], in theory of qualitative behaviour of differential equations, such as
finding necessary and sufficient conditions for the existence of positive solutions of
half linear equations [9,43,49], oscillation theory [14,55] and references therein.

Although delta and nabla Hardy-Copson type inequalities for the case { > 1 have
been deeply analyzed, the case { < 0 has been investigated neither via nabla and
delta approaches nor for continuous and discrete cases. Hence the main contribution
of this article is to extend aforementioned Hardy-Copson type inequalities obtained
for { > 1 to the case { < 0 by using nabla and delta time scale calculi without chan-
ging the directions of the inequalities derived for { > 1. By means of application,
we use complementary delta Hardy-Copson type inequalities to obtain necessary and
sufficient conditions for the nonoscillation of the related half linear dynamic equa-
tions.

Our results are inspired from the papers [28] and [51] which contain nabla and
delta Hardy-Copson type inequalities for the case £ > 1. We notice that when £ < 0
and m > 0, six choices appear contrary to the three cases in [28] and [51] for { > 1
andmn >0. Thecases 0 <N+0<1, M+C>1andm+6>1 n+{>1 were
considered in [28] and [51] whereas the case N+ 6 < 0, N+ > 1 was not invest-
igated. { < 0 provides new three cases, namely N1+6 <0, 0 <n+{ < 1 and
0<NnN+6<1,0<m+{<1landm+86>1, 0 <N+ < 1. Therefore in the
light of these six options, delta and nabla Hardy-Copson type inequalities, which
are presented in Theorem 1-Theorem 8 and obtained for £ > 1, are extended to the
case { < 0. These inequalities are established in the same directions of those stated in
the above mentioned theorems. Furthermore discrete and continuous Hardy-Copson
type inequalites proven for { > 1 are expanded to { < 0. The application of the delta
Hardy-Copson type inequalities provides that the nonoscillation criteria obtained for
half linear dynamic equation yield results concerning half linear differential and half
linear difference equations.

The organization of this paper can be seen as follows. The nabla time scale cal-
culus and its main properties are introduced in Section 2. The delta version can be
obtained similarly. The contribution of Section 3, which includes the main result, is
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to extend the recently developed results, which are established for £ > 1 and presen-
ted in [28,51], to the case { < 0 by using the properties of nabla and delta derivatives
and integrals. Then the special cases of nabla and delta Hardy-Copson type inequal-
ities, which are continuous and discrete inequalities, are stated. The final section
serves as applications of the obtained inequalities in oscillation theory of the half
linear dynamic equations.

2. PRELIMINARIES

This section is devoted to present the main definitions and theorems of nabla time
scale calculus. We refer the reader to [7, | 1] for the concept of time scale calculus in
delta and nabla senses.

If T # o is a closed subset of R, then T is called a time scale. The backward jump
operator p is defined as p(t) := sup(—eo,¢)r, for t € T, provided sup@ = inf T. The
backward graininess function v: T — Ry is defined by v(r) :=1—p(z), fort € T.

The V-derivative of I': T — R at the point 7 € T = T/[inf T, 6(inf T)) denoted by
I'V(¢) is the number enjoys the property that for all € > 0, there exists a neighborhood
V C T of t € T such that

IT(s) =T(p(r)) =T (1) (s — p())| < els —p(1)]
foralls V.
Some important features of the nabla derivative can be listed below.

Lemma 1 ([7, 11]). Suppose that A: T — R andt € Tk.

(1) If A is nabla differentiable at t, then A is continuous att.
(2) If A is continuous at a left scattered point t, then A is nabla differentiable at
A(t) — A(p(t

twith AV (1) = AW = A1)

v(t)

(3) A is nabla differentiable at a left dense point t if and only if the limit

Alt)—A
AY(t) =lim Alr) = Als)
s—t t—s

(4) If A is nabla differentiable at t, then AP(t) = A(t) —v(t)AY(t).

exists as a finite number.

A function I : T — R is ld-continuous if it is continuous at each left-dense points

in T and lim I'(s) exists as a finite number for all right-dense points in T. The set
s—t

Cia(T,R) denotes the class of real, 1d-continuous functions defined on a time scale
T. If I’ € Ciy(T,R), then there exists a function I'(¢) such that i (t) =T(r) and the
b

nabla integral of I" is defined by / [(s)Vs=T(b) —T(a).
Some of the properties of the nabla integral are gathered next.

Lemma 2 ([7, 11]). Letty,tr,t3 € Twitht) <t3 <tpanda,b e R.IfA,T: T —R
are ld-continuous, then
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1) / ®laA(s) + BT(5)]Vs = a / ® A(s)V(s)+ b /n “I(s)Vs and

n 131

1
/AsVs:
1
2)/A Vs+/A )Vs = A /A
4l 4l

3) mtegmtlon by parts formula holds:

A(s)rV(s)Vs = A(n)T(12) — A(r)T(1y) — /[1 : AY(s)T'(p(s))Vs.

141
Lemma 3 (Holder’s inequality, [39]). Letty,t, € T. For A,T € Cj4([t1,t2]T,R) and
1 1
for the conjugate numbers X,® > 1 satisfying " + o 1, Holder’s inequality

1/®

S [ [inervs] [ [ mers] hotds e

1 1
IfO<x<1ork<0with p” + o 1, then the reverse Holder’s inequality

1/®

: [A(s)D(5)[Vs > [ /[ ’ |A(s),1<vs] 1/ [ /,:2 r (S)|mvs] o1

is satisfied.

Lemma 4 (Chain rule for the nabla derivative, [23]). If A: R — R is continuously
differentiable and I': T — R is nabla differentiable, then Aol is nabla differentiable
and

(AoT)V(s) =TV (s) U AN (T(p(s)) +hv(s )Fv(s))dh].

3. HARDY-COPSON TYPE INEQUALITIES

In the sequel, we will obtain several Hardy-Copson type inequalities for non-
negative, ld-continuous, V-differentiable and locally nabla integrable functions z and
h and for the functions G, H, G and H defined in (1.9).

The next theorem, which is proven for { < 0, 1 > 0 and N+ 6 < 0, provides com-
plements of some of the previous Hardy-Copson type inequalities given for
{>1,m>0and 0 <M+6 < 1. These previous Hardy-Copson type inequalities
are listed as follows:

(a) The discrete inequality obtained by Bennett [10, Corollary 5] or Leindler
[35, Proposition 3].

(b) The continuous inequality obtained by Saker et al. [51, Corollary 2.2] or
Kayar and Kaymakcalan [28, Remark 3.22].

(c) The deltainequality (1.5) in Theorem 1 obtained by Saker et al. [51, Theorem
2.2].
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(d) The nabla inequality (1.10) in Theorem 5 obtained by Kayar and Kaymakg¢alan
[28, Theorem 3.19].
Theorem 9. For the functions z,h,G and H defined as in (1.9), suppose that there
(ép((tt)) <Ly fort € (a,o)r. Let {<0,N>0andn+6<0
be real constants.
(1) Ifn+& > 1, then we have

/°° AOHP O [M C/w EOEON S 5y

exists Ly > 0 such that

G(r)+e -6 (G()no-¢
and
PO (L 0] = ) [P
/a WVIS lll_n_e /a EIONLEE: vi. (32

(2) If0 <M+ < 1, then we have
I dHON g, [ n+¢ | I REOHO G, (33

(G 1—n—6] [G(e)n+e-C
and
= 2(0)[H(O)]T M+8 1% = 2R [H@)
/a Ww < [1—1]—9] /a WW. (3.4)

Proof. Although we try to obtain nabla Hardy-Copson type inequalities, the same
methodology used in the proof of [31, Theorem 3.1] and [3 1, Theorem 3.4], which
present nabla Bennett-Leindler type inequalities, works for the proofs of this theorem.
To be clear, we sketch the proof of inequality (3.1). If the same steps are followed
in the proof of [31, Theorem 3.1] for the function H and [31, Theorem 3.4] for the
function G, we can show that

/°° dO)[HP (O 5 _N+E T zh)HP (OMeto (3.5)
a [G(*o 1-n-6/a [G(r)+o-!

The difference of the proofs appear after this step. By applying reverse Holder in-
equality (2.1) to the right hand side of inequality (3.5) with the constants { < 0 and
0< Cél <1, we get

[G()]n+* ~I-m-96 [G(e)+o-¢

Then raising both sides of inequality (3.6) to { < 0 changes the direction of this
inequality, which implies the desired result (3.1). The proofs of inequalities (3.2)-
(3.4) can be obtained by following the same method as above.

[ /wwww]”l uEL N RO e

O
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Remark 1. The nabla Hardy-Copson type inequalities (3.1)-(3.2) obtained for
£<0,mM>0and n+6 <0 are complements of the nabla Hardy-Copson type in-
equalities given in [28, Theorem 3.19] for { > 1, >0and 0 <n+6 < 1.

Note that the condition 1+ { > 1 is automatically satisfied in [28, Theorem 3.19]
while the other one, 0 <N+ < 1, has not appeared in the literature before. Therefore
the nabla inequalities (3.3)-(3.4), which are obtained for { <0, 1 >0, n+6 <0 and
0 <M+ < 1 for the first time, offer novelties in the current literature.

Corollary 1. From the inequalities (3.1)-(3.4) obtained by the nabla calculus, we
can get the dual inequalities in the delta setting by replacing G°,G,HP |H presented
in (1.9) by G,G°,H,H° defined in (1.4), respectively.

Let the functions z,h,G and H be defined as in (1.4). Suppose that there exists

G(t
My > 0 such that G(’((t)) < M fort € (a,)r. In this case for { <0, n > 0 and
N+ 0 <0, nabla Hardy-Copson type inequalities (3.1)-(3.4) become novel delta
Hardy-Copson type inequalities, two of which obtained from (3.2) and (3.4) can be
written as follows, respectively. For N+ > 1, we have

M+ Q)
1-n—-06

[, N

: r () S [H ()"
Gape = .

G-t

and for 0 <n+{ < 1, we have

= (1) [HO (1)1 n+¢ 18 1= 20RO He O
/ G+ A’S[l—n—e]/a Gt

The delta versions of the nabla Hardy-Copson type inequalities (3.1)-(3.2) ob-
tained for £ < 0, 1 > 0 and M+ 0 < 0 are complements of the delta Hardy-Copson
type inequalities given in [5], Theorem 2.2] for {>1, N> 0and 0 <M+06 < 1.

Ifn =0, then the delta Hardy-Copson type inequalities in [47, Theorem 2.9] ob-
tained for L > 1 and 0 < 0 < 1 are extended to the cases { < 0 and © < 0 by the delta
variant of nabla Hardy-Copson type inequalities (3.1)-(3.2).

Note that the condition N+ £ > 1 is automatically satisfied in [5 1, Theorem 2.2] and
[47, Theorem 2.9] while the other one, 0 <M+ < 1, has not appeared in the liter-
ature before. Therefore the delta analogues of nabla Hardy-Copson type inequalities
(3.3)-(3.4), which are obtained for { < 0, m >0, n+6 < 0 and
0 <N+ < 1 for the first time, offer novelties in the current literature by this co-
rollary.

Remark 2. If the time scale is the set of real numbers, then for all ¢+ € R, the
backward jump operator results in p(r) =¢ and L; = 1 in (3.1)-(3.4). Hence for
0 <N+ ¢, inequalities (3.1)-(3.4) coincide and their delta versions become exactly
the same inequalities as them. Therefore together with its coincident inequalities,
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inequality (3.1) reduces to the following inequality as

= 2(1)[H (1) n+g 1° R OHON
[ s [rae) [ Egmae e 69
where { < 0, 1 > 0 and 1+ 6 < 0 and the functions G and H is defined as
G(1) = /t “s)ds and H(r) = / ' (5)h(s)ds. (3.8)

For the continuous case, when £ > 1, 1> 0 and 0 <M+ 6 < 1, the first Hardy-
Copson type inequality was established in [51, Corollary 2.2] and [28, Remark 3.22]
for the given aforementioned functions G and H. By this remark, these results are
extended to the cases { < 0, 1 > 0 and 1+ 6 < 0 by the novel continuous Hardy-
Copson type inequality (3.7).

Remark 3. If the time scale is the set of natural numbers, then for all € N, the
backward jump operator results in p(¢) =7 — 1 in (3.1)-(3.4).

Using / s)Vs= Y z(k), wehave G°(1) = G(1—1) Z z(k), where G(t) =

k=t+1
1

z(k). Moreover H(t) = Z z(k)h(k). Let us assume that there exist L; > 0
k=t+1 k=a+1
G(t—1)
G(1)
numbers, inequalities (3.1)-(3.4) become novel discrete Hardy-Copson type inequal-
ities, two of which obtained from (3.2) and (3.4) can be written as follows, respect-
ively. Form+ > 1, we have

iz H(t— DM [L“*e 'm+y]°

such that

<L;.Fora=0,{<0,n>0andn+6 <0, in the set of natural

G(t—1)|n+e I1-n—06

= z(H)hS()[H(r —1)N
t=1 ; [ t_l THG?C

andfor0<’r]+§< 1, we have

o0 n+§ n+¢ e z(t)hg(t)[H(l‘)]n
; l—l ”+9§[1—ﬂ—9} tZIW'

The discrete Hardy-Copson type inequality obtained by Bennett [ 10, Corollary 5]
or Leindler [35, Proposition 3] for L > 1, 1 =0, 0 < 6 < 1 and the ones obtained
in [28, Remark 3.23] for { > 1, 1 >0, 0 <n+6 < 1, are extended to the cases
£<0,n>0, n+6 <0by Theorem 9 and particularly by this remark.

Note that the condition m+ { > 1 is automatically satisfied in [10, Corollary 5],
[35, Proposition 3] and [28, Remark 3.23] while the other one, 0 <M+ < 1, has not
appeared in the literature before. Therefore the discrete Hardy-Copson type inequal-
ities, which are obtained for { <0, N1 >0, n+6 <0 and 0 <+ < 1 for the first
time, offer novelties in the current literature by this remark.
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The next theorem, which is proven for { <0, 1> 0and 0 <M+ 6 < 1, provides
complements of some of the previous Hardy-Copson type inequalities given for
{>1,m>0and 0 <M+6 < 1. These previous Hardy-Copson type inequalities
are listed as follows:

(a) The discrete inequality obtained by Bennett [10, Corollary 5] or Leindler
[35, Proposition 3].

(b) The continuous inequality obtained by Saker et al. [51, Corollary 2.2] or
Kayar and Kaymakcalan [28, Remark 3.22].

(c) The delta inequality (1.5) in Theorem 1 obtained by Saker et al. [51, Theorem
2.2].

(d) The nabla inequality (1.10) in Theorem 5 obtained by Kayar and Kaymakcalan
[28, Theorem 3.19].

Theorem 10. For the functions Z(,])’l,G and H defined as in (1.9), suppose that
G(t

there exists Ly > 0 such that 1 > —~ > L, fort € (a,e)t. Let { <0, 1 > 0 and

GP (1)
0 <N +6 < 1 be real constants.
(1) Ifn+C& > 1, then we have

[N g, {mer [N, )

[GP(1)[n+0 I-n-6 [GP()]n+6-¢
and
= 2(0)[HP (1) n+§ 1% 1= 2hc ) [HP (1)" 1
/a G0 Vi < [1 _n_e] /a TOIE: Vi. (3.10)
(2) If 0 <M+ < 1, then we have

= 2()[H ()" g 1° [ 0RO H @)D .
[ s [e) [ e o

and
= 2(0)[H(1)"* NG 1° [ 0RO H@) "
[ me s e [ e e G
Proof. The combination of the techniques used in the proof of [31, Theorem 3.1]
and in the proof of Theorem 9 work for the proof of this theorem. U

Remark 4. The nabla Hardy-Copson type inequalities (3.9)-(3.10) obtained for
<0,mM>0and 0 <1n+6 < 1 are complements of the nabla Hardy-Copson type
inequalities given in [28, Theorem 3.19] for{ > 1, N1>0and 0 <M +6 < 1.

Note that the condition 1+ { > 1 is automatically satisfied in [28, Theorem 3.19]
while the other one, 0 <N+ < 1, has not appeared in the literature before. Therefore
the nabla inequalities (3.11)-(3.12), which are obtained for { <0, N >0, 0<n+6 <
1 and 0 <M+ < 1 for the first time, offer novelties in the current literature.
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Corollary 2. From the inequalities (3.9)-(3.12) obtained by the nabla calculus, we
can get the dual inequalities in the delta setting by replacing G°,G,HP ,H presented
in (1.9) by G,G°,H,H° defined in (1.4), respectively.

Let the functions z,h,G and H be defined as in (1.4). Suppose that there exists
M> > 0 such that 1 < G(t)
GO(1)
0 <M+0 < 1, nabla Hardy-Copson type inequalities (3.9)-(3.12) become novel delta
Hardy-Copson type inequalities, two of which obtained from (3.9) and (3.11) can be
written as follows, respectively. For N+ > 1, we have

= 2(n)[H ()] My+8) 1" 1= 2()hS (@) [H O
/a [G()]n+? Até[l—n—e} / [G(r)n+o-¢

and for 0 <n+{ < 1, we have

[ < [ " oo
a (GO T T [1-m=8] Jo  [G(r)NTOE

The delta versions of the nabla Hardy-Copson type inequalities (3.9)-(3.10) ob-
tained for £ < 0, N > 0and 0 <M+ 0 < 1 are complements of the delta Hardy-Copson
type inequalities given in [5], Theorem 2.2] for {>1,N>0and 0 <M+06 < 1.

Ifn =0, then the delta Hardy-Copson type inequalities in [47, Theorem 2.9] ob-
tained for £ > 1 and 0 < 0 < 1 are extended to the cases { < 0 and © < 1 by the delta
variant of Hardy-Copson type inequalities (3.9)-(3.10).

1
< ﬁfort € (a,o0). In this case for { <0, n > 0 and
2

At

At.

Note that the condition M+ > 1 is automatically satisfied in [51, Theorem 2.2]
and [47, Theorem 2.9] while the other one, 0 < N+ { < 1, has not appeared in
the literature before. Therefore the delta analogues of nabla Hardy-Copson type in-
equalities (3.11)-(3.12), which are obtained for { <0, 1 >0, 0 <n-+6 < 1 and
0 <N+ < 1 for the first time, offer novelties in the current literature by this corol-
lary.

Remark 5. If the time scale is the set of real numbers, then for all + € R, the
backward jump operator results in p(¢) =7 and L, = 1 in (3.9)-(3.12). Hence for
0 <M+, inequalities (3.9)-(3.12) coincide and their delta versions become exactly
the same inequalities as them. Therefore together with its coincident inequalities,
inequality (3.9) reduces to the following inequality as

© z(t)[H (1)1 5 e (RS [H ()]
/ z(1)] ()]9 dr < n+¢ / z(t)h=(t)[H (t)] dr, (3.13)
a GO I-n—6] Jo [G(r)nTot

where 1 >0, { <0 and 0 <M +6 < 1 and the functions G and H is defined as in
(3.8).

For the continuous case, when { > 1, 1> 0 and 0 <N+ 6 < 1, the first Hardy-
Copson type inequality was established in [51, Corollary 2.2] and [28, Remark 3.22]
for the given aforementioned functions G and H. By this remark, these results are
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extended to the cases £ < 0, 1 > 0 and N+ 6 < 0 by the novel continuous Hardy-
Copson type inequality (3.13).

Remark 6. If the time scale is the set of natural numbers, then for all ¢+ € N, the

backward jump operator results in p(r) =7 — 1 in (3.9)-(3.12). Let us assume that
Gir—1) 1
<—.Fora=0,0<0,nM>0and0 <
GO Soh ora=0, { n>0an n-+
0 < 1, in the set of natural numbers, inequalities (3.9)-(3.12) become novel discrete
Hardy-Copson type inequalities, two of which obtained from (3.9) and (3.11) can be

written as follows, respectively. For n+ > 1, we have

= 2()[H(— D" [Lm+8)]°5& z(0)h @)[H( — 1))
Z t—l Jn-+6 = _l—n—e] ~ [G(t—1)nte-¢

there exist L, > 0 such that 1 <

=1
and for 0 <n+{ < 1, we have

- O T n+¢ z(t)h>()[H (1)
e = [P Bl

where the series G and H are defined as in Remark 3.

The discrete Hardy-Copson type inequality obtained by Bennett [10, Corollary 5]
or Leindler [35, Proposition 3] for { > 1, 1 =0, 0 < 6 < 1 and the ones obtained
in [28, Remark 3.23] for { > 1, 1 >0, 0 <n+6 < 1, are extended to the cases
£<0,m>0,0<m+6 < 1by Theorem 10 and particularly by this remark.

Note that the condition n+ { > 1 is automatically satisfied in [10, Corollary 5],
[35, Proposition 3] and [28, Remark 3.23] while the other one, 0 <M+ < 1, has not
appeared in the literature before. Therefore the discrete Hardy-Copson type inequal-
ities, which are obtained for { <0, >0, 0<Mn+6 < 1and 0 <M+ < 1 for the
first time, offer novelties in the current literature by this remark.

The next theorem, which is proven for { < 0, 1 > 0 and N+ 6 < 0, provides com-
plements of some of the previous Hardy-Copson type inequalities given for
{>1,m>0and 0 <M+6 < 1. These previous Hardy-Copson type inequalities
are listed as follows:

(a) The discrete inequality obtained by Copson [16, Theorem 2.1] and the dis-
crete inequality obtained by Bennett [10, Corollary 4] or Leindler [35, Pro-
position 2].

(b) The continuous inequality (1.3) obtained by Hardy et al. [26, Theorem 330],
the continuous inequality obtained by Copson [17, Theorem 3] and the con-
tinuous inequality obtained by Pachpatte as inequality (6) in [40, Theorem 1]
and Pecari¢ and Hanj$ as inequality (9) in [42, Theorem 3].

(c) The delta inequality (1.6) in Theorem 2 obtained by Saker et al. [51, Theorem
2.1].
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(d) The nabla inequality (1.11) in Theorem 6 obtained by Kayar and Kaymakc¢alan
[28, Theorem 3.13].

Theorem 11. For the functions z,h,G and H defined as in (1.9), suppose that there
G(1)

G’ (1)

exists Ly > 0 such that 1 < <Ljfort € (a,°)r. Let{<0,N>0andn+6<0

be real constants.
(1) Ifn+C > 1, then we have

o g § oo Jag
/ LOHEOM G [ n+¢ } / OLEOICIOIS (3.14)
« [P Fn=6) Jo Qo
and
_ _ ¢ _
~dHOE S [ M+ ] ez @@ i 1S
I e S [ e ) L oo O
(2) If0 <M+ < 1, then we have
= 2(0)[H° (O] n+g 10 O WE )"
/a @ape = [1—1]—9} / L= 10
and
= 2(t) [H* ()] [ n+¢ r = 2(t) () [H ()] 317
| g = [Eae) L Gpee T O
Proof. The combination of the techniques used in the proof of [31, Theorem 3.9]
and in the proof of Theorem 9 work for the proof of this theorem. g

Remark 7. The nabla Hardy-Copson type inequalities (3.14)-(3.15) obtained for
€<0,m>0andn+6 <0 are complements of the nabla Hardy-Copson type in-
equalities given in [28, Theorem 3.13] for{ > 1,1 >0and 0 <n+6 < I.

Note that the condition 1+ { > 1 is automatically satisfied in [28, Theorem 3.13]
while the other one, 0 <N+ < 1, has not appeared in the literature before. Therefore
the nabla inequalities (3.16)-(3.17), which are obtained for { <0, 1 >0, n+6 <0
and 0 <M+ < 1 for the first time, offer novelties in the current literature.

Corollary 3. From the inequalities (3.14)-(3.17) obtained by the nabla calculus,
we can get the dual inequalities in the delta setting by replacing EP,E, ﬁp,ﬁ presen-
ted in (1.9) by 6,?,ﬁ,ﬁc defined in (1.4), respectively.

Let the functions z,h,G and H be defined as in (1.4). Suppose that there exists

G°(1)

M3 > 0 such that ) < Mj for t € (a,o°)1. In this case for { <0, n >0 and
t

N+ 0 <0, nabla Hardy-Copson type inequalities (3.14)-(3.17) become novel delta
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Hardy-Copson type inequalities, two of which obtained from (3.15) and (3.17) can
be written as follows, respectively. For N+ > 1, we have

[ SOIMOIIWS [M?*e‘l(n +9)
« [N I-n-6

C [ASEOE
NGO

and for 0 <n+{ < 1, we have

AP 48 18 A OEOD
L = el et

The delta versions of the nabla Hardy-Copson type inequalities (3.14)-(3.15) ob-
tained for £ < 0, 1 > 0 and N+ 6 < 0 are complements of the delta Hardy-Copson
type inequalities given in [51, Theorem 2.1] for {>1,M>0and 0 <n+06 < 1.

Ifn =0, then the delta Hardy-Copson type inequalities in [17, Theorem 2.5] ob-
tained for > 1 and 0 < 0 < 1 are extended to the cases { < 0 and 8 < 0 by the delta
variant of nabla Hardy-Copson type inequalities (3.14)-(3.15).

Note that the condition N+ £ > 1 is automatically satisfied in [51, Theorem 2.1] and
[47, Theorem 2.5] while the other one, 0 <M+ < 1, has not appeared in the liter-
ature before. Therefore the delta analogues of nabla Hardy-Copson type inequalities
(3.16)-(3.17), which are obtained for { < 0, 1 >0, M+ 6 < 0 and
0 <n+ & < 1 for the first time, offer novelties in the current literature by this co-
rollary.

Remark 8. If the time scale is the set of real numbers, then for all ¢+ € R, the
backward jump operator results in p(¢) = ¢ and L3 = 1 in (3.14)-(3.17). Hence for
0 <+, inequalities (3.14)-(3.17) coincide and their delta versions become exactly
the same inequalities as them. Therefore together with its coincident inequalities,
inequality (3.14) reduces to the following inequality as

[, [wcr [N, G

[G(e)n+e 1-n-6 [G(e)+e-5

where { < 0, 1 > 0andm +6 < 0 and the functions G and H is defined as

G(r) = / "A(s)ds and H(r) = /, " 2 (s)h(s)ds. (3.19)

Inequality (3.18) is novel and generalizes the continuous inequality (1.3) obtained
by Hardy et al. [26, Theorem 330] and the continuous inequality obtained by Copson
[17, Theorem 3] for { > 1, n=0and 6 < 1 to the cases { <0, > 0andn+6 <O0.
Moreover inequality (3.18) extends the continuous inequality obtained by Pachpatte
as inequality (6) in [40, Theorem 1] and Pecari¢ and Hanj$ as inequality (9) in [42,
Theorem 3] for{ > 1, M >0, N+6 < 1 tothe cases { <0, N >0andn+6 <0.
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Remark 9. If the time scale is the set of natural numbers, then for all ¢+ € N, the
backward jump operator results in p(¢) =t — 1 in (3.14)-(3.17).

t t—1

Using G(t) = /tz(s)Vs = ) z(k), we have G'(1)=G(r—1) = Y z(k).

k=a+1 ka1
Moreover H(r) = Y z(k)f(k). Let us assume that there exist L3 > 0 such that
k=t+1
a() |
= G(t—1) <L3. Fora=0,{<0,m>0and n+6 <0, in the set of natural
r—

numbers, inequalities (3.14)-(3.17) become novel discrete Hardy-Copson type in-
equalities, two of which obtained from (3.15) and (3.17) can be written as follows,
respectively. Forn+ > 1, we have

o 2(n)hS(r )[H(t)]”

n+9 1-n—-6 [ (r)n

=1

oo ﬁ n+¢ LT]+9 l(n"i'c
pEUCAHE

and for n+{ > 1, we have
iz t—1)]ﬂ+§§[ n+¢ ] i [ (r—1)N .

n+e 1-n-6 )n+e-¢

=1

The discrete Hardy—Copson type inequality obtained by Copson [16, Theorem 2.1]
and the discrete Hardy-Copson type inequality obtained by Bennett [ 10, Corollary 4]
or Leindler [35, Proposition 2] for { > 1, 1 =0, 0 < 6 < 1 and the ones obtained
in [28, Remark 3.18] for { > 1, 1 >0, 0 <N+ 6 < 1, are extended to the cases
£<0,n>0,n+6<0by Theorem 11 and particularly by this remark.

Note that the condition )+ { > 1 is automatically satisfied in [ 16, Theorem 2.1],
[10, Corollary 4], [35, Proposition 2] and [28, Remark 3.18] while the other one,
0 <M+ < 1, has not appeared in the literature before. Therefore the discrete
Hardy-Copson type inequalities, which are obtained for { < 0, 1 >0, 146 < 0 and
0 <M+ < 1 for the first time, offer novelties in the current literature by this remark.

The next theorem, which is proven for { < 0, 1> 0and 0 <M+ 6 < 1, provides
complements of some of the previous Hardy-Copson type inequalities given for
€>1,m>0and 0 <m+86 < 1. These previous Hardy-Copson type inequalities
are listed as follows:

(a) The discrete inequality obtained by Copson [16, Theorem 2.1] and the dis-
crete inequality obtained by Bennett [10, Corollary 4] or Leindler [35, Pro-
position 2].

(b) The continuous inequality (1.3) obtained by Hardy et al. [26, Theorem 330],
the continuous inequality obtained by Copson [17, Theorem 3] and the con-
tinuous inequality obtained by Pachpatte as inequality (6) in [40, Theorem 1]
and Pecari¢ and Hanj$ as inequality (9) in [42, Theorem 3].
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(c) The delta inequality (1.6) in Theorem 2 obtained by Saker et al. [51, Theorem
2.1].

(d) The nabla inequality (1.11) in Theorem 6 obtained by Kayar and Kaymakc¢alan
[28, Theorem 3.13].

Theorem 12. For the functions z,h,G and H defined as in (1.9), suppose that

G"(1)

there exists Ly > 0 such that 1 > W > Ly fort € (a,00)T. Let L <0, >0 and

0 <Nn+0 < 1 be real constants.
(1) Ifn+C > 1, then we have

= 2OH@OC S [Lam+8)]° = 20 ) [H@))"
[ome = f55] [ eopee v o®
and

“OEOM [ n+g 18 o) H @)

/a TN Vi < _1—n—e] / R Vi. (3.21)

(2) If0 <+ < 1, then we have
I OE O, [ n+g } : [ EOEON G (30

[G(r)[n+0 I-m-9 [G(r)|n+o-¢
and
/ Z(tl[? (©) Vi < [ n+t ] / Z(t)llp (O ()] V. (3.23)
a [G(r)+e I=m=8] Ja  [G" (et
Proof. The combination of the techniques used in the proof of [31, Theorem 3.9]
and in the proof of Theorem 9 work for the proof of this theorem. n

Remark 10. The nabla Hardy-Copson type inequalities (3.20)-(3.21) obtained for
£<0,m>0and 0 <n+6 < 1 are complements of the nabla Hardy-Copson type
inequalities given in [28, Theorem 3.13] for{ > 1,1 >0and 0 <n+86 < 1.

Note that the condition 1+ { > 1 is automatically satisfied in [28, Theorem 3.13]
while the other one, 0 <N+ < 1, has not appeared in the literature before. Therefore
the nabla inequalities (3.22)-(3.23), which are obtained for { <0, >0,0<n+6 <
1 and 0 <M+ < 1 for the first time, offer novelties in the current literature.

Corollary 4. From the inequalities (3.20)-(3.23) obtained by the nabla calculus,
we can get the dual inequalities in the delta setting by replacing EP,E, ﬁp,ﬁ presen-
ted in (1.9) by 6,?,ﬁ,ﬁc defined in (1.4), respectively.

Let the functions z,h,G and H be defined as in (1.4). Suppose that there exists

G)

My > 0 such that 1 > =0 My fort € (a,o)1. In this case for { < 0, 1> 0 and
t

0 <n+6 <1, nabla Hardy-Copson type inequalities (3.20)-(3.23) become novel
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delta Hardy-Copson type inequalities, two of which obtained from (3.20) and (3.22)
can be written as follows, respectively. For n+{ > 1, we have

= 2(0)[H® (1)1 Mym+8)1 = 2(o)hs ) [H ()"
[ <[t [ e
and for 0 <+ < 1, we have

[N < [ 1 r JRECLULGIN
a [GC@me T L1-m=8] Jo  [G°(r)m+o-t
The delta versions of the nabla Hardy-Copson type inequalities (3.20)-(3.21) ob-
tained for £ < 0, N > 0and 0 <M+ 0 < 1 are complements of the delta Hardy-Copson
type inequalities given in [5], Theorem 2.1] for {>1, N> 0and 0 <M+06 < 1.
Ifn =0, then the delta Hardy-Copson type inequalities in [47, Theorem 2.5] ob-
tained for { > 1 and 0 < 0 < 1 are extended to the cases { < 0 and 0 <0 < 1 by the
delta variant of nabla Hardy-Copson type inequalities (3.20)-(3.21).

Note that the condition 1+ { > 1 is automatically satisfied in [51, Theorem 2.1]
and [47, Theorem 2.5] while the other one, 0 < n+ £ < 1, has not appeared in
the literature before. Therefore the delta analogues of nabla Hardy-Copson type in-
equalities (3.22)-(3.23), which are obtained for { <0, 1 >0, 0 <n+6 < 1 and
0 <N+ < 1 for the first time, offer novelties in the current literature by this corol-
lary.

Remark 11. If the time scale is the set of real numbers, then for all ¢ € R, the
backward jump operator results in p(¢) = ¢ and Ly = 1 in (3.20)-(3.23). Hence for
0 <N+, inequalities (3.20)-(3.23) coincide and their delta versions become exactly
the same inequalities as them. Therefore together with its coincident inequalities,
inequality (3.20) reduces to the following inequality as

= 2(n)[H ()" n+¢ 1° 2@ EE)
[ o= [n2a] [ Gamee w020

where { <0, 1> 0and 0 <M +06 < 1 and the functions G and H is defined as in
(3.19).

Inequality (3.24) is novel and generalizes the continuous inequality (1.3) obtained
by Hardy et al. [26, Theorem 330] and the continuous inequality obtained by Cop-
son [17, Theorem 3] for { > 1, 1 =0 and 6 < 1 to the cases { < 0, 1 > 0 and
0 <n+6 < 1. Moreover inequality (3.24) extends the continuous inequality obtained
by Pachpatte as inequality (6) in [40, Theorem 1] and Pecari¢ and Hanj$ as inequality
(9) in [42, Theorem 3] for L > 1, 1 >0, N+6 < 1 to the cases £ < 0, 1 > 0 and
0<n+6<1

Remark 12. If the time scale is the set of natural numbers, then for all € N, the
backward jump operator results in p(¢#) =7 — 1 in (3.20)-(3.23). Let us assume that
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G(1) 1
@(t—l) <L .Fora=0,{<0,n>0and0<n+06<
1, in the set of natural numbers, inequalities (3.20)-(3.23) becomes novel discrete
Hardy-Copson type inequalities, two of which obtained from (3.20) and (3.22) can
be written as follows, respectively. For 1+ > 1, we have

3 DIt [Lam+¢ )[H(t)]”
Z n+9 <{14—n 9] Z 6-¢

there exist L4 > 0 such that

t=1

andforO<1]+C< 1, we have

g r—lwg[ n+¢ ] Ee W (= 1)

n+oe I-n—06 [G(1)]n+6-C ’

where the series G and H are defined as in Remark 9.

The discrete Hardy-Copson type inequality obtained by Copson [16, Theorem 2.1]
and the discrete inequality obtained by Bennett [10, Corollary 4] or Leindler [35,
Proposition 2] for { > 1, 1 =0, 0 <0 < 1 and the ones obtained in [28, Remark 3.18]
for{>1,1n>0,0<n+6<1,areextended to the cases { <0, >0, 0<n+06<1
by Theorem 12 and particularly by this remark.

Note that the condition N+ { > 1 is automatically satisfied in [ 16, Theorem 2.1],
[10, Corollary 4], [35, Proposition 2] and [28, Remark 3.18] while the other one,
0 <n+ < 1, has not appeared in the literature before. Therefore the discrete Hardy-
Copson type inequalities, which are obtained for { <0, 1 >0, 0 <m+6 < 1 and
0 <N+ < 1 for the first time, offer novelties in the current literature by this remark.

The next theorem, which is proven for { < 0, 1 >0 and 1+ 6 > 1, provides com-
plements of some of the previous Hardy-Copson type inequalities given for
€>1,1mM>0and n+6 > 1. These previous Hardy-Copson type inequalities are
listed as follows:

(a) The discrete inequality (1.1) obtained by Hardy as inequality (2) in [24, The-
orem B], the discrete inequality obtained by Copson [16, Theorem 1.1] and
the discrete inequality obtained by Bennett [ 10, Corollary 3] or Leindler [35,
Proposition 1].

(b) The continuous inequality (1.2) obtained by Hardy as inequality (4) in [24,
Theorem B], the continuous inequality (1.3) obtained by Hardy et al. [26,
Theorem 330], the continuous inequality obtained by Copson [17, Theorem
1] and the continuous inequality obtained by Pachpatte as inequality (6) in
[40, Theorem 1] and Pecari¢ and Hanjs as inequality (3) in [42, Theorem 1].

(c) The delta inequality (1.8) in Theorem 4 obtained by Kayar and Kaymakg¢alan
[28, Remark 3.2] and Saker et al. [51].

(d) The nabla inequality (1.13) in Theorem 8 obtained by Kayar and Kaymakcalan
[28, Theorem 3.1].
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Theorem 13. Suppose that the functions z,h,G and H are defined as in (1.9) and
the constant Ly is defined as in Theorem 12. Let { <0, N> 0and n+6 > 1 be real
numbers.

(1) If N+ > 1, then we have
/w Z(t)[Hp(t)]nJrthg [ n+¢ r/w ()RS (0)[HP (1)) \vZ (3.25)

[G(r)]n*® n+06-1 [G(r)]n+o-¢
and
[ [y ROl
. [ N1 | o @ et
(2) If0 <+ < 1, then we have
= 2(n)[H ()] [ n+¢ } R OLLOILIOIN
— \% — \% 3.27
| ope = o) L Tgopee O
and
/w AHOMC [ n+¢ ] : /“’ AR OHOM (3.28)
« @ome T ko1l o @Pepret
Proof. The combination of the techniques used in the proof of [31, Theorem 3.12]
and in the proof of Theorem 9 work for the proof of this theorem. g

Remark 13. The nabla Hardy-Copson type inequalities (3.25)-(3.26) obtained for
£<0,m>0and n+6 > 1 are complements of the nabla Hardy-Copson type in-
equalities given in [28, Theorem 3.1] for{ > 1, M1 >0andn+6 > 1.

Note that the condition 1+ { > 1 is automatically satisfied in [28, Theorem 3.1]
while the other one, 0 <M+ < 1, has not appeared in the literature before. Therefore
the nabla inequalities (3.27)-(3.28), which are obtained for { <0, >0, n+6 > 1
and 0 <M+ { < 1 for the first time, offer novelties in the current literature.

Corollary 5. From the inequalities (3.25)-(3.28) obtained by the nabla calculus,
we can get the dual inequalities in the delta setting by replacing G’ ,G,HP H presen-
ted in (1.9) by é,éc,H,H" defined in (1.4), respectively.

Let the functions z,h, G and H be defined as in (1.4) and the constant My be defined
as in Corollary 4. In this case for { < 0, 1 > 0 and n+ 0 > 1, nabla Hardy-Copson
type inequalities (3.25)-(3.28) become novel delta Hardy-Copson type inequalities,
two of which obtained from (3.26) and (3.28) can be written as follows, respectively.
Forn+{ > 1, we have

My m+ Q)

_— At
n+6-1

[G(r)n+o-¢

= OHOME
/ G

: I ()RS H ()"
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and for 0 <n+{ < 1, we have

/mz(t)[Hc(t)]n+CAt§[ n+¢ ]C /°°z(t>hﬁ(t)[H"<t>J”N_

[G(e)]n+* n+6-1 [G(r)+o-5

The delta versions of the nabla Hardy-Copson type inequalities (3.25)-(3.26) ob-
tained for £ < 0, 1 > 0 and N+ 0 > 1 are complements of the delta Hardy-Copson
type inequalities given in [28, Remark 3.2] and [51] for > 1, >0andmn+6 > 1.

Ifn =0, then the delta Hardy-Copson type inequalities in [47, Theorem 2.1] ob-
tained for C > 1 and © > 1 are extended to the cases L < 0 and 6 > 1 by the delta
variant of nabla Hardy-Copson type inequalities (3.25)-(3.20).

Note that the condition 1+ { > 1 is automatically satisfied in [28, Remark 3.2] and
[51] while the other one, 0 < M+ { < 1, has not appeared in the literature before.
Therefore the delta analogues of nabla Hardy-Copson type inequalities (3.27)-(3.28),
which are obtained for { <0, N1 >0, N1+6>1and 0 <m+ < 1 for the first time,
offer novelties in the current literature by this corollary.

Remark 14. If the time scale is the set of real numbers, then for all ¢ € R, the
backward jump operator results in p(¢) = ¢ and Ly = 1 in (3.25)-(3.28). Hence for
0 <N+, inequalities (3.25)-(3.28) coincide and their delta versions become exactly
the same inequalities as them. Therefore together with its coincident inequalities,
inequality (3.25) reduces to the following inequality as

= 2(0)[H (1)) n+8 15 = 20)hEO)H )"
[ewpe o= i) [ gapes v 0

where { < 0, 1> 0andm +6 > 1 and the functions G and H is defined as in (3.19)
and (3.8), respectively.

Inequality (3.29) is novel and generalizes the continuous inequality (1.2) obtained
by Hardy as inequality (4) in [24, Theorem B], the continuous inequality (1.3) ob-
tained by Hardy et al. [26, Theorem 330], the continuous inequality obtained by Cop-
son [17, Theorem 1] for{>1,M=0, 06> 1tothecases{ <0, mM>0,NnN+6>1.
Moreover inequality (3.29) extends the continuous inequality obtained by Pachpatte
as inequality (6) in [40, Theorem 1] and Pecari¢ and Hanj$ as inequality (3) in [42,
Theorem 1] for{>1,N1>0,N+6>1tothecase { <0, M>0,M+6> 1.

Remark 15. If the time scale is the set of natural numbers, then for all # € N, the
backward jump operator results in p(z) =7 — 1 in (3.25)-(3.28). Let the constant L4
be defined as in Remark 12. Fora=0, { <0, 1> 0and n+6 > 1, in the set
of natural numbers, inequalities (3.25)-(3.28) becomes novel discrete Hardy-Copson
type inequalities, two of which obtained from (3.26) and (3.28) can be written as
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follows, respectively. For n+{ > 1, we have

y <0l L 9]
= 5t— n+6-—1
and for0 <n+{< 1,

AOHEO™ e r SEQULQILION
([Gr—1M*e ~ [N+0-1] & [G(r—1)n+6-C’

= (RS [H (= 1))
2 [G(

t—l )n+e-¢

H(r— 1)
1) n+e =

t=1

HMS

where the series G and H are defined as in Remark 9 and Remark 3, respectively.

The discrete Hardy-Copson type inequality (1.1) obtained by Hardy as inequality
(2) in [24, Theorem B], the discrete inequality obtained by Copson [16, Theorem
1.1] and the discrete inequality obtained by Bennett [10, Corollary 3] or Leindler
[35, Proposition 1] for { > 1, 1 =0, 6 > 1 and the ones obtained in [28, Remark 3.7]
for { > 1,1 >0, n+6 > 1, are extended to the cases { <0, 1 >0, N+6 > 1 by
Theorem 13 and particularly by this remark.

Note that the condition m + £ > 1 is automatically satisfied in [24, Theorem B],
[16, Theorem 1.1], [10, Corollary 3], [35, Proposition 1] and [28, Remark 3.7] while
the other one, 0 < N+ < 1, has not appeared in the literature before. Therefore
the discrete Hardy-Copson type inequalities, which are obtained for £ < 0, n > 0,
N+6>1and 0 <m+ < 1 for the first time, offer novelties in the current literature
by this remark.

The next theorem, which is proven for { < 0, 1 > 0 and N+ 6 > 1, provides com-
plements of some of the previous Hardy-Copson type inequalities given for
€>1,mM>0and n+6 > 1. These previous Hardy-Copson type inequalities are
listed as follows:

(a) The discrete inequality obtained by Bennett [10, Corollary 6] or Leindler
[35, Proposition 4].

(b) The continuous inequality obtained by Saker et al. [51, Corollary 2.3] and by
Kayar and Kaymakecalan [28, Remark 3.11].

(c) The delta inequality (1.7) in Theorem 3 obtained by Saker et al. [51, Theorem
2.3].

(d) The nabla inequality (1.12) in Theorem 7 obtained by Kayar and Kaymakcalan
[28, Theorem 3.8].

Theorem 14. Suppose that the functions z,h,G and H are defined as in (1.9) and
the constant L, is defined as in Theorem 10. Let L < 0, > 0 and N+ 0 > 1 be real
numbers.

(1) If N+ > 1, then we have

I )£< g]ﬂgcw = [n o J C/ g v eo
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C [OEORANG,

(2) If0 <+ < 1, then we have
[ MO [ n+¢ } C I OHOE O 53

[GP (1) +o n+6-1 [GP(r)[n+o-5
and
w (A IEP (£)M+C oo SAHEP (1)
[HEONS G [l ]E PO OROE N,
a [G@)® n+6—1] Jo  [G{r)Tet
Proof. The combination of the techniques used in the proof of [31, Theorem 3.4]
and in the proof of Theorem 9 work for the proof of this theorem. O

Remark 16. The nabla Hardy-Copson type inequalities (3.30)-(3.31) obtained for
£<0,n>0andn+6 > 1 are complements of the nabla Hardy-Copson type in-
equalities given in [28, Theorem 3.8] for { > 1, M >0andn+6 > 1.

Note that the condition 1+ { > 1 is automatically satisfied in [28, Theorem 3.8]
while the other one, 0 <N+ < 1, has not appeared in the literature before. Therefore
the nabla inequalities (3.32)-(3.33), which are obtained for { <0, N1 >0, n+6 > 1
and 0 <m+ { < 1 for the first time, offer novelties in the current literature.

Corollary 6. From the inequalities (3.30)-(3.33) obtained by the nabla calculus,
we can get the dual inequalities in the delta setting by replacing G®, G,Hp,ﬁ presen-
ted in (1.9) by G, G°,H,H° defined in (1.4), respectively.

Let the functions z,h,G and H be defined as in (1.4) and the constant M, be defined
as in Corollary 2. In this case for { < 0, > 0 and M+ 0 > 1, nabla Hardy-Copson
type inequalities (3.30)-(3.33) become novel delta Hardy-Copson type inequalities,
two of which obtained from (3.31) and (3.33) can be written as follows, respectively.
Forn+{ > 1, we have

= () E ()
|, Sosmme <

My M40
n+6-1

: [FEOE O,

(O

and for 0 <n+{ < 1, we have
[ AEONE [ 0+ ]t I R OHEON
a (GO T T n+6—1] Jo [GO(r)|n*E-E
The delta versions of the nabla Hardy-Copson type inequalities (3.30)-(3.31) ob-

tained for £ < 0, 1 > 0 and N+ 0 > 1 are complements of the delta Hardy-Copson
type inequalities given in [5], Theorem 2.3] for {>1, M >0andn+6 > 1.
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If N = 0, then the delta Hardy-Copson type inequalities in [47, Theorem 2.10]
obtained for { > 1 and © > 1 are extended to the cases { < 0 and © > 1 by the delta
variant of nabla Hardy-Copson type inequalities (3.30)-(3.31).

Note that the condition N+ £ > 1 is automatically satisfied in [51, Theorem 2.3] and
[47, Theorem 2.10] while the other one, 0 <1+ £ < 1, has not appeared in the liter-
ature before. Therefore the delta analogues of nabla Hardy-Copson type inequalities
(3.32)-(3.33), which are obtained for { < 0, 1 >0, m+6 > 1 and
0 <M+ < 1 for the first time, offer novelties in the current literature by this co-
rollary.

Remark 17. If the time scale is set of real numbers, then for all r € R, the backward
jump operator results in p(¢) = ¢ and L, = 1 in (3.30)-(3.33). Hence for 0 <M+,
inequalities (3.30)-(3.33) coincide and their delta versions become exactly the same
inequalities as them. Therefore together with its coincident inequalities, inequality
(3.30) reduces to the following inequality as

REILIG) n+¢ 10 @ E)
/a BEO [me—l] / TGt

where { < 0, N >0 and n+6 > 1 and the functions G and H is defined as in (3.8)
and (3.19), respectively.

For the continuous case, when { > 1, 1 > 0 and n+ 6 > 1, the first Hardy-Copson
type inequality was established in [51, Corollary 2.3] and [28, Remark 3.11] for the
given aforementioned functions G and H. By this remark, these inequalities are ex-
tended to the cases { < 0, 1 > 0 and 1+ 6 > 1 by the novel continuous Hardy-Copson
type inequality (3.34).

(3.34)

Remark 18. If the time scale is set of natural numbers, then for all # € N, the
backward jump operator results in p(z) =¢ — 1 in (3.30)-(3.33). Let the constant
L, be defined as in Remark 6. Fora=0, { <0, n>0and n+6 > 1, in the set
of natural numbers, inequalities (3.30)-(3.33) become novel discrete Hardy-Copson
type inequalities, two of which obtained from (3.31) and (3.33) can be written as
follows, respectively. Forn+C > 1, we have

LT]+9 l(n+€
n+6-—1

= 2(1)[H ()
Y =G0
<1,

p%

o 2(0)hS(r )[H(I)]”
; [G()+o-¢

=1
and for 0 <n+¢
i t—l)]“*c< n+¢ Z z(OhS(@)[H (@ — 1)
= e n+6-1 [G()re-t
where the series H and G are defined as in Remark 9 and Remark 3, respectively.

The discrete Hardy-Copson type inequality obtained by Bennett [10, Corollary 6]
or Leindler [35, Proposition 4] for { > 1, 1 =0, 6 > 1 and the ones obtained in

we have

t=1
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[28, Remark 3.12] for £ > 1, 1 >0, n+6 > 1, are extended to the cases { < 0,
n >0, n+0 > 1 by Theorem 14 and particularly by this remark.

Note that the condition m+ { > 1 is automatically satisfied in [10, Corollary 6],
[35, Proposition 4] and [28, Remark 3.12] while the other one, 0 <M+ < 1, has not
appeared in the literature before. Therefore the discrete Hardy-Copson type inequal-
ities, which are obtained for { <0, N >0, N+6 > 1 and 0 <N+ < 1 for the first
time, offer novelties in the current literature by this remark.

4. APPLICATIONS

This section is devoted to one of the applications of Hardy-Copson inequalities
obtained in Section 3. We only employ the delta versions of the nabla inequalit-
ies (3.3) and (3.11) presented in Theorem 9 and Theorem 10, respectively, to find
nonoscillation criteria for the related half linear dynamic equations. For the other
delta inequalities including the term H°(t), the similar process can be followed and
similar theorems can be obtained.

Before proving nonoscillation criteria, let us show Hardy-Copson inequalities that
we will use. The nabla inequalities (3.3) and (3.11) presented in Theorem 9 and
Theorem 10, respectively, become the following delta Hardy-Copson inequalities.

Corollary 7. Let the functions z,h,G and H be defined as in (1.4). Let { <0, >0
and 0 <m+{< 1.

1) Ifn+06 <0, then we have delta Hardy-Copson inequality
oo c n+¢ r 18 e ¢ c n
[HOIORS [ nel 1E e sReen,
o [Go()+e [1-n—=6] Ja [Go(n)n+o-C
(i) If0 <M +6 < 1, then we have delta Hardy-Copson inequality
00 o (£\N+E r 15 peo ¢ o (/)N
[ [ e ) EOEOn,,
a (GO0 [1-n—=6] Jo  [G(r)n+e-C
We focus on the following second order half linear dynamic equations
A(r(t)®(x))* +c(t)P(x°) =0 4.3)

and

AR()®(y))* +C(1)@(y°) =0 (4.4)
where r,¢,R,C € C,q(I,R), ®(x) = |x|P~sgnx for p > 1 and R(¢), r(t) # 0. Moreover,
I:=[a,b]T with a < p(b) and I, := [a,0) in case supT = eo. For the detailed inform-
ation about half linear dynamic equations and their oscillation properties, we refer
[2,53,54]. The oscillation theory of second order half linear dynamic equations has
been extensively studied and many techniques have been developed to find condi-
tions for oscillation and nonoscillation of equation (4.3). In order to focus on the two
important methods, which are Reid Roundabout Theorem and Sturm Comparison
Theorem, we need to give the fundamental definitions of the oscillation theory.
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Definition 1 ([53]). A solution x of equation (4.3) has a generalized zero at the
point 7 if x() = 0. A solution x of equation (4.3) has a generalized zero in (7,6(¢))
if r(t)y(t)y(o(r)) < 0. Equation (4.3) is disconjugate on the interval /, if there is no
nontrivial solution of equation (4.3) with two (or more) generalized zeros in /.

Definition 2 ([53]). If there exists ¢ € [a,o0) such that equation (4.3) is disconjug-
ate on [c,d] for every d > c, then it is called nonoscillatory (on [a,c0)).

Proposition 1 (Reid Roundabout Theorem, [53], Section 5, Theorem 2). Let
U=U(a;b) = {x: x € CL(I,R) with y(a) = x(b) = 0}
be the class of admissible functions. The following are equivalent.
(a) The p-degree functional F on U, which is defined as

b
F(X;a,b)z/a [rOX (@) = e(r)x° (1) "],

is positive definite on U provided F () > 0 for all x, € U and F () =0 if and
only if y =0.
(b) Equation (4.3) is disconjugate on I and so, it is nonoscillatory.

Proposition 2 (Sturm type Comparison Theorem, [53], Section 6, Theorem 3).
Suppose that R(t) > r(t) and c(t) > C(t) for t € I* C T, If equation (4.3) is discon-
Jjugate (nonoscillatory) on I (on |a,)), then so is equation (4.4).

Now we are ready to present necessary and sufficient condition for the nonoscilla-
tion of the half linear dynamic equation (4.3).

Theorem 15. Suppose that the functions z,h,G and H are defined as in (1.9). Let

_m_01%
£<0,n>0,0<n+{<1andp> 1. Wedefine E = []nj-?;e} .
oy 2P P () [HO ()]
(1) Form+6<O0andforH(t) €U, ifr(t) = Go oo and

2(r) [HO ()]

) =E = Goye

, then equation (4.3) is nonoscillatory.

_ L=p (Y BS=P () [HO (£)]N
(2) For0<m+6<landforH(t) €U, ifr(t) = < (t[)G(t)]ﬂ(i)e[—C (1)]

) [HS (£)|n+E—p
R O1LA0)
[G()]n+?
Proof. We follow the technique used in [55, Claim 3.7]. Let us choose a > 0
for a € T. For the nonnegative functions % and z, let us define an admissible function

t
H € U introduced in Proposition 1 as H(t) = / z(s)h(s)As. Itis obvious that AH (1) =
a
z(t)h(t).

and

, then equation (4.3) is nonoscillatory.
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(1) We have

b b
/ [<r>|HA<>r W) & = [ IO = O (1)) a1

C=p () [HS c &-p

:/ & t)]EH)e[ S omyy Z(t)[[ccé;})ﬁ (HO(0)"| At
H°( M Z(O)[HO )]

:/ R _EZ O At>0

because of the delta Hady-Copson inequality (4.1). Hence, equation (4.3) is
nonoscillatory by Proposition 1.
(2) The proof can be obtained from the proof of (1) by replacing G°(¢) by G(t)
and by using delta Hady-Copson inequality (4.2).
O
Theorem 16. Let the assumptions of Theorem 15 hold and R(t) > r(t) and C(t) <
c(t) on I*.
(i) If r(t) and c(t) are defined as in (1) of Thereom 15, then equation (4.4) is
nonoscillatory.
(ii) If r(t) and c(t) are defined as in (2) of Thereom 15, then equation (4.4) is
nonoscillatory.

Proof. After using the fact that if the sequences r(¢) and c(¢) are defined as in (1)
and (2) of Theorem 15, then equation (4.3) is nonoscillatory, if we employ the Sturm
type comparison theorem (Proposition 2), then we can prove (i) and (ii), respectively.

O

REFERENCES

[1] R. Agarwal, M. Bohner, and A. Peterson, “Inequalities on time scales: a survey,” Math. Inequal.
Appl., vol. 4, no. 4, pp. 535-557, 2001, doi: 10.7153/mia-04-48.

[2] R.P. Agarwal, M. Bohner, and P. Iv{ehék, “Half-linear Dynamic Equations,” in Nonlinear Analysis
and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, 2. Kluwer Acad. Publ.,
Dordrecht, 2003, pp. 1-57.

[3] R. P. Agarwal, R. R. Mahmoud, S. H. Saker, and C. Tung, “New generalizations of Németh-
Mohapatra type inequalities on time scales,” Acta Math. Hungar., vol. 152, no. 2, pp. 383-403,
2017, doi: 10.1007/s10474-017-0718-2.

[4] R. Agarwal, D. O’Regan, and S. Saker, Dynamic inequalities on time scales.  Springer, Cham,
2014. doi: 10.1007/978-3-319-11002-8.

[5] R. P. Agarwal, D. O’Regan, and S. H. Saker, Hardy type inequalities on time scales. ~ Springer,
Cham, 2016. doi: 10.1007/978-3-319-44299-0.

[6] D. R. Anderson, “Time-scale integral inequalities,” JIPAM. J. Inequal. Pure Appl. Math., vol. 6,
no. 3, pp. Article 66, 15, 2005.

[7] E. M. Atici and G. S. Guseinov, “On Green’s functions and positive solutions for boundary value
problems on time scales,” 2002, vol. 141, no. 1-2, pp. 75-99, doi: 10.1016/S0377-0427(01)00437-
X.


http://dx.doi.org/10.7153/mia-04-48
http://dx.doi.org/10.1007/s10474-017-0718-2
http://dx.doi.org/10.1007/978-3-319-11002-8
http://dx.doi.org/10.1007/978-3-319-44299-0
http://dx.doi.org/10.1016/S0377-0427(01)00437-X
http://dx.doi.org/10.1016/S0377-0427(01)00437-X

(8]

(9]
[10]

[11]
[12]

[13]

[14]
[15]
[16]
[17]

(18]

(19]
[20]
(21]

[22]

[23]

[24]
[25]

[26]
(27]

(28]

[29]

NABLA AND DELTA HARDY-COPSON TYPE INEQUALITIES 363

A. A. Balinsky, W. D. Evans, and R. T. Lewis, The analysis and geometry of Hardy’s inequality,
ser. Universitext. Springer, Cham, 2015. doi: 10.1007/978-3-319-22870-9.

P. R. Beesack, “Hardy’s inequality and its extensions,” Pacific J. Math., vol. 11, pp. 39-61, 1961.
G. Bennett, “Some elementary inequalities,” Quart. J. Math. Oxford Ser. (2), vol. 38, no. 152, pp.
401-425, 1987, doi: 10.1093/qmath/38.4.401.

M. Bohner and A. Peterson, Dynamic equations on time scales. An introduction with applications.
Birkhéuser Boston, Inc., Boston, MA, 2001. doi: 10.1007/978-1-4612-0201-1.

M. Bohner and A. Peterson, Eds., Advances in dynamic equations on time scales. ~ Birkhduser
Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-0-8176-8230-9.

M. J. Bohner, R. R. Mahmoud, and S. H. Saker, “Discrete, continuous, delta, nabla, and
diamond-alpha Opial inequalities,” Math. Inequal. Appl., vol. 18, no. 3, pp. 923-940, 2015, doi:
10.7153/mia-18-69.

R. C. Brown and D. B. Hinton, “A weighted Hardy’s inequality and nonoscillatory differential
equations,” Quaestiones Math., vol. 15, no. 2, pp. 197-212, 1992.

Y.-M. Chu, Q. Xu, and X.-M. Zhang, “A note on Hardy’s inequality,” J. Inequal. Appl., pp.
2014:271, 10, 2014, doi: 10.1186/1029-242X-2014-271.

E. T. Copson, “Note on Series of Positive Terms,” J. London Math. Soc., vol. 3, no. 1, pp. 49-51,
1928, doi: 10.1112/jlms/s1-3.1.49.

E. T. Copson, “Some integral inequalities,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 75, no. 2, pp.
157-164, 1975/76, doi: 10.1017/S0308210500017868.

A. A. El-Deeb, H. A. El-Sennary, and Z. A. Khan, “Some reverse inequalities of Hardy type on
time scales,” Adv. Difference Equ., pp. Paper No. 402, 18, 2020, doi: 10.1186/s13662-020-02857-
w.

A. A. El-Deeb, H. A. Elsennary, and D. Baleanu, “Some new Hardy-type inequalities on time
scales,” Adv. Difference Equ., 2020, doi: 10.1186/s13662-020-02883-8.

P. Gao and H. Zhao, “On Copson’s inequalities for 0 < p < 1,” J. Inequal. Appl., pp. Paper No.
72, 13,2020, doi: 10.1186/s13660-020-02339-3.

M. Giirses, G. S. Guseinov, and B. Silindir, “Integrable equations on time scales,” J. Math. Phys.,
vol. 46, no. 11, pp. 113510, 22, 2005, doi: 10.1063/1.2116380.

G. S. Guseinov and B. Kaymakgalan, “Basics of Riemann delta and nabla integration
on time scales,” J. Difference Equ. Appl., vol. 8, no. 11, pp. 1001-1017, 2002, doi:
10.1080/10236190290015272.

A. F. Giivenilir, B. Kaymakcalan, and N. Nesliye Pelen, “Constantin’s inequality for nabla and
diamond-alpha derivative,” J. Inequal. Appl., pp. 2015:167, 17, 2015, doi: 10.1186/s13660-015-
0681-9.

G. H. Hardy, “Note on a theorem of Hilbert,” Math. Z., vol. 6, no. 3-4, pp. 314-317, 1920, doi:
10.1007/BF01199965.

G. H. Hardy, “Notes on some points in the integral calculus, LX. An inequality between integrals,”
Messenger Math., vol. 54, no. 3, pp. 150-156, 1925.

G. H. Hardy, J. E. Littlewood, and G. Pélya, Inequalities. Cambridge, University Press, 1934.
M. M. Iddrisu, A. C. Okpoti, and A. K. Gbolagade, “Some proofs of the classical integral Hardy
inequality,” Korean J. Math., vol. 22, no. 3, pp. 407-417, 2014.

Z. Kayar and B. Kaymakg¢alan, “Hardy-Copson type inequalities for nabla time scale calculus,”
Turk. J. Math., vol. 45, no. 2, pp. 1040-1064, 2021.

Z. Kayar and B. Kaymakcalan, “Some extended nabla and delta Hardy-Copson type inequalities
with applications in oscillation theory,” Bulletin of the Iranian Mathematical Society, vol. 48,
no. 5, pp. 2407-2439, 2022, doi: 10.1007/s41980-021-00651-2.


http://dx.doi.org/10.1007/978-3-319-22870-9
http://dx.doi.org/10.1093/qmath/38.4.401
http://dx.doi.org/10.1007/978-1-4612-0201-1
http://dx.doi.org/10.1007/978-0-8176-8230-9
http://dx.doi.org/10.7153/mia-18-69
http://dx.doi.org/10.1186/1029-242X-2014-271
http://dx.doi.org/10.1112/jlms/s1-3.1.49
http://dx.doi.org/10.1017/S0308210500017868
http://dx.doi.org/10.1186/s13662-020-02857-w
http://dx.doi.org/10.1186/s13662-020-02857-w
http://dx.doi.org/10.1186/s13662-020-02883-8
http://dx.doi.org/10.1186/s13660-020-02339-3
http://dx.doi.org/10.1063/1.2116380
http://dx.doi.org/10.1080/10236190290015272
http://dx.doi.org/10.1186/s13660-015-0681-9
http://dx.doi.org/10.1186/s13660-015-0681-9
http://dx.doi.org/10.1007/BF01199965
http://dx.doi.org/10.1007/s41980-021-00651-2

364

[30]

[31]

(32]
(33]
[34]
(35]
(36]
[37]

(38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Z. KAYAR AND B. KAYMAKCALAN

Z. Kayar and B. Kaymakcalan, “The complementary nabla Bennett-Leindler type inequalities,”
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics,
vol. 71, no. 2, pp. 349-376, 2022, doi: 10.31801/cfsuasmas.930138.

Z. Kayar, B. Kaymakcalan, and N. N. Pelen, “Bennett-Leindler type inequalities for nabla time
scale calculus,” Mediterr. J. Math., vol. 18, no. 1, pp. Paper No. 14, 18, 2021, doi: 10.1007/s00009-
020-01674-5.

A. Kufner, L. Maligranda, and L.-E. Persson, The Hardy inequality: About its history and some
related results. Vydavatelsky Servis, Plzeni, 2007.

A. Kufner, L.-E. Persson, and N. Samko, Weighted inequalities of Hardy type, 2nd ed. =~ World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. doi: 10.1142/10052.

P. Lefévre, “A short direct proof of the discrete Hardy inequality,” Arch. Math. (Basel), vol. 114,
no. 2, pp. 195-198, 2020, doi: 10.1007/s00013-019-01395-6.

L. Leindler, “Some inequalities pertaining to Bennett’s results,” Acta Sci. Math. (Szeged), vol. 58,
no. 1-4, pp. 261-279, 1993.

Z.-W. Liao, “Discrete Hardy-type inequalities,” Adv. Nonlinear Stud., vol. 15, no. 4, pp. 805-834,
2015, doi: 10.1515/ans-2015-0404.

N. Masmoudi, “About the Hardy Inequality,” in An Invitation to Mathematics. From Competitions
to Research. Springer, Heidelberg, 2011, pp. 165-180.

E. N. Nikolidakis, “A sharp integral Hardy type inequality and applications to Mucken-
houpt weights on R,” Ann. Acad. Sci. Fenn. Math., vol. 39, no. 2, pp. 887-896, 2014, doi:
10.5186/aasfm.2014.3947.

U. M. Ozkan, M. Z. Sarikaya, and H. Yildirim, “Extensions of certain integral inequalities on time
scales,” Appl. Math. Lett., vol. 21, no. 10, pp. 993-1000, 2008, doi: 10.1016/j.am1.2007.06.008.
B. G. Pachpatte, “On some generalizations of Hardy’s integral inequality,” J. Math. Anal. Appl.,
vol. 234, no. 1, pp. 15-30, 1999, doi: 10.1006/jmaa.1999.6294.

N. N. Pelen, “Hardy-Sobolev-Mazya inequality for nabla time scale calculus,” Eskisehir Technical
University Journal of Science and Technology B - Theoretical Sciences, vol. 7, no. 2, pp. 133-145,
2019.

J. Pecari¢ and v. Hanjs, “On some generalizations of inequalities given by B. G. Pachpatte,” An.
Stiing. Univ. Al 1. Cuza lagi. Mat. (N.S.), vol. 45, no. 1, pp. 103-114 (2000), 1999.

S. H. Saker and R. R. Mahmoud, “A connection between weighted Hardy’s inequality and
half-linear dynamic equations,” Adv. Difference Equ., pp. Paper No. 129, 15, 2019, doi:
10.1186/s13662-019-2072-x.

S. H. Saker, R. R. Mahmoud, M. M. Osman, and R. P. Agarwal, “Some new generalized forms of
Hardy’s type inequality on time scales,” Math. Inequal. Appl., vol. 20, no. 2, pp. 459-481, 2017,
doi: 10.7153/mia-20-31.

S. H. Saker, R. R. Mahmoud, and A. Peterson, “Some Bennett-Copson type inequalities on time
scales,” J. Math. Inequal., vol. 10, no. 2, pp. 471-489, 2016, doi: 10.7153/jmi-10-37.

S. H. Saker, R. R. Mahmoud, and A. Peterson, “A unified approach to Copson and Beesack
type inequalities on time scales,” Math. Inequal. Appl., vol. 21, no. 4, pp. 985-1002, 2018, doi:
10.7153/mia-2018-21-67.

S. H. Saker, D. O’Regan, and R. Agarwal, “Generalized Hardy, Copson, Leindler and Ben-
nett inequalities on time scales,” Math. Nachr., vol. 287, no. 5-6, pp. 686-698, 2014, doi:
10.1002/mana.201300010.

S. H. Saker, D. O’Regan, and R. P. Agarwal, “Converses of Copson’s inequalities on time scales,”
Math. Inequal. Appl., vol. 18, no. 1, pp. 241-254, 2015, doi: 10.7153/mia-18-18.

S. H. Saker, A. G. Sayed, G. AlNemer, and M. Zakarya, “Half-linear dynamic equations and
investigating weighted Hardy and Copson inequalities,” Adv. Difference Equ., pp. Paper No. 549,
19, 2020, doi: 10.1186/513662-020-03006-z.


http://dx.doi.org/10.31801/cfsuasmas.930138
http://dx.doi.org/10.1007/s00009-020-01674-5
http://dx.doi.org/10.1007/s00009-020-01674-5
http://dx.doi.org/10.1142/10052
http://dx.doi.org/10.1007/s00013-019-01395-6
http://dx.doi.org/10.1515/ans-2015-0404
http://dx.doi.org/10.5186/aasfm.2014.3947
http://dx.doi.org/10.1016/j.aml.2007.06.008
http://dx.doi.org/10.1006/jmaa.1999.6294
http://dx.doi.org/10.1186/s13662-019-2072-x
http://dx.doi.org/10.7153/mia-20-31
http://dx.doi.org/10.7153/jmi-10-37
http://dx.doi.org/10.7153/mia-2018-21-67
http://dx.doi.org/10.1002/mana.201300010
http://dx.doi.org/10.7153/mia-18-18
http://dx.doi.org/10.1186/s13662-020-03006-z

NABLA AND DELTA HARDY-COPSON TYPE INEQUALITIES 365

[50] S.H. Saker, D. O’Regan, and R. P. Agarwal, “Dynamic inequalities of Hardy and Copson type on
time scales,” Analysis (Berlin), vol. 34, no. 4, pp. 391-402, 2014, doi: 10.1515/anly-2012-1234.

[51] S. H. Saker, M. M. Osman, D. O’Regan, and R. P. Agarwal, “Inequalities of Hardy type and gen-
eralizations on time scales,” Analysis (Berlin), vol. 38, no. 1, pp. 47-62, 2018, doi: 10.1515/anly-
2017-0006.

[52] S. Saker, “Dynamic inequalities on time scales: A survey,” J. Fractional Calc. & Appl., vol. 3(S),
no. 2, pp. 1-36, 2012.

[53] P. Rehdk, “Half-linear dynamic equations on time scales: IVP and oscillatory properties,” Nonlin-
ear Funct. Anal. Appl., vol. 7, no. 3, pp. 361-403, 2002.

[54] P. Rehdk, “On certain comparison theorems for half-linear dynamic equations on time scales,”
Abstr. Appl. Anal., no. 7, pp. 551-565, 2004, doi: 10.1155/S1085337504306251.

[55] P. Rehdk, “Hardy inequality on time scales and its application to half-linear dynamic equations,”
J. Inequal. Appl., vol. 2005, no. 5, pp. 495-507, 2005, doi: 10.1155/JTA.2005.495.

Authors’ addresses

Zeynep Kayar
Van Yiiziincii Y1l University, Department of Mathematics, 65080 Van, Turkey
E-mail address: zeynepkayar@yyu.edu.tr

Billur Kaymakcalan

(Corresponding author) University of Turkish Aeronautical Association, Faculty of Engineering,
06790 Etimesgut/Ankara, Turkey

E-mail address: billurkaymakcalan@gmail.com


http://dx.doi.org/10.1515/anly-2012-1234
http://dx.doi.org/10.1515/anly-2017-0006
http://dx.doi.org/10.1515/anly-2017-0006
http://dx.doi.org/10.1155/S1085337504306251
http://dx.doi.org/10.1155/JIA.2005.495

	1. Introduction
	2. Preliminaries
	3. Hardy-Copson type inequalities
	4. Applications
	References

