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Abstract. In this article, we study n-derivations on generalized matrix algebras under certain
restrictions and find that every n-derivation is an extremal n-derivation on generalized matrix
algebras.
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1. HISTORICAL DEVELOPMENT

As far as we know numerous algebraists studied n-derivations on variety of rings
and algebras which can be seen in [1–4, 6–15, 18] and bibliographic content existing
therein. In the year 1993, Brešar et al. [6] proved that ‘every biderivation over a non-
commutative prime ring can be described as inner biderivation’. Also, in [8] Brešar
investigated biderivations on semiprime rings. The readers are encouraged to read
the survey paper [10, Section 3] where applications of biderivations to other fields
are also described. Benkovič in [4] defined the concept of an extremal biderivation
and proved that ‘under certain conditions a biderivation of a triangular algebra is a
sum of an extremal and an inner biderivation.’ Ghosseiri [13] showed that ‘every
biderivation of upper triangular matrix rings is decomposed into the sum of three
biderivations D,ψ and ∆, where D(E11,E11) = 0, ψ is an extremal biderivation and ∆

is a special kind of biderivation.’ Moreover, they proved that ‘ every biderivation of
upper triangular matrices over a noncommutative prime ring is inner which extended
some results due to Benkovič [4].’ Du and Wang [12] proved that ‘under certain con-
ditions a biderivation of a generalized matrix algebra is a sum of an extremal and an
inner biderivation.’ Also they considered the question ‘when a biderivation of a gen-
eralized matrix algebra is an inner biderivation?’ and showed that ‘every biderivation
of a full matrix algebra over a unital algebra is inner.’ Apart from associative algebras
or rings, many authors studied biderivation and related maps on various types of Lie
algebras for example see [7, 11] and references therein.
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In [18], Wang et al. explored ‘n-derivations (n ≥ 3) on a certain class of triangular
algebras.’ Also, they put on their major findings on upper triangular matrix algebras
and nest algebras. In the light of above literature, we study the n-derivations on gener-
alized matrix algebras and prove that every n-derivation φ : G×G×·· ·×G→G is an
extremal n-derivation ζ such that ζ(x1,x2, . . . ,xn) = [x1, [x2, . . . , [xn,φ(e,e, . . . ,e)] . . .]],
where φ(e,e, . . . ,e) /∈ Z(G) under certain restrictions.

2. BASIC DEFINITIONS & PRELIMINARIES

Let A be an algebra over a commutative ring R with unity. For any x,y ∈ A ,
[x,y] = xy−yx denotes the commutator and Z(A) denote the center of A . An R-linear
map d : A → A is said to be a derivation if d(xy) = d(x)y+ xd(y) for all x,y ∈ A . If
derivation d takes form d(x) = [x,a] for some fixed a ∈ A , then d is called an inner
derivation on A .

An n-linear map φ : A ×A × ·· · ×A → A is said to be an n-derivation, if it is
a derivation in each component. In particular, a 2-derivation is a biderivation. A
permuting n-derivation ζ : A×A×·· ·×A →A is said to be an extremal n-derivation
if it is of the form ζ(x1,x2, . . . ,xn) = [x1, [x2, . . . , [xn,a] . . .]] for all x1,x2, . . . ,xn ∈ A ,
where a ∈ A and a /∈ Z(A) such that [[A ,A ],a] = 0. An extremal 2-derivation is
said to be an extremal biderivation. If A is a noncommutative algebra, then the map
φ(x,y) = λ[x,y] for all x,y ∈ A , where λ ∈ Z(A) is called an inner biderivation.

Let A and B be two unital algebras with unity 1A and 1B, respectively. A Morita
context consists of two unital R-algebras A and B, two bimodules (A,B)-bimodule
M and (B,A)-bimodule N, and two bimodule homomorphisms called the bilinear
pairings ξMN : M⊗

B
N −→ A and ΩNM : N⊗

A
M −→ B satisfying the following com-

mutative diagrams:

M⊗
B

N⊗
A

M
ξMN⊗IM //

IM⊗ΩNM

��

A⊗
A

M

∼=

��
M⊗

B
B

∼= // M

and N⊗
A

M⊗
B

N
ΩNM⊗IN //

IN⊗ξMN

��

B⊗
B

N

∼=

��
N⊗

A
A

∼= // N .

If (A,B,M,N, ξMN,ΩNM) is a Morita context (refer [17] basic properties of Morita
context), then the set[

A M
N B

]
=

{[
a m
n b

]
a ∈ A,m ∈ M,n ∈ N,b ∈ B

}
forms an R-algebra under matrix addition and matrix-like multiplication, where at
least one of the two bimodules M and N is distinct from zero. This kind of R-algebra
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introduced by Morita [17] is generally called as generalized matrix algebra of order
2 and represented by

G=G(A,M,N,B) =
[

A M
N B

]
.

All associative algebras with nontrivial idempotents are isomorphic to generalized
matrix algebras. The familiar examples of generalized matrix algebras are full matrix
algebras and triangular algebras [12]. Also, if N = 0, then G is called a triangular
algebra.

The center of G is Z(G) =

{[
a 0
0 b

]
am = mb,na = bn for all m ∈ M,n ∈ N

}
.

Also, note that the center Z(G) consists of all diagonal matrices
[

a 0
0 b

]
, where

a ∈ Z(A),b ∈ Z(B) and am = mb,na = bn for all m ∈ M,n ∈ N. However, if we
assume that M is faithful as a left A-module and also as a right B-module, then the
conditions a ∈ Z(A) and b ∈ Z(B) become redundant and can be deleted.

Define two natural projections πA : G→ A and πB : G→ B by πA

([
a m
n b

])
=

a and πB

([
a m
n b

])
= b. Moreover, πA(Z(G))⊆ Z(A) and πB(Z(G))⊆ Z(B) and

there exists a unique algebraic isomorphism η : πA(Z(G)) → πB(Z(G)) such that
am = mη(a) and na = η(a)n for all a ∈ πA(Z(G)),m ∈ M and n ∈ N.

Let 1A (resp. 1B) be the unit of the algebra A (resp. B) and let I be the unity of

generalized matrix algebra G, e =

[
1A 0
0 0

]
, f = I − e =

[
0 0
0 1B

]
and G11 =

eGe, G12 = eG f , G21 = fGe, G22 = fG f . Thus G = eGe+ eG f + fGe+ fG f =
G11 +G12 +G21 +G22 where G11 is subalgebra of G isomorphic to A, G22 is sub-
algebra of G isomorphic to B, G12 is (G11,G22)-bimodule isomorphic to M and
G21 is (G22,G11)-bimodule isomorphic to N. Also, πA(Z(G)) and πB(Z(G)) are iso-
morphic to eZ(G)e and fZ(G) f respectively. Then there is an algebra isomorphisms
η : eZ(G)e → fZ(G) f such that am = mη(a) and na = η(a)n for all m ∈ eG f and
n ∈ fGe. Also, through the rest of paper, it is assume that M is faithful as a left
A-module and also as a right B-module.

An (A,B)-bimodule homomorphism f : M → M is of the standard form if there
exist a0 ∈ Z(A), b0 ∈ Z(B) such that f(m) = a0m+mb0 for all m ∈ M. Similarly,
(B,A)-bimodule homomorphism g : N → N is of the standard form if there exist
a ∈ Z(A),b ∈ Z(B) such that g(n) = na+ bn for all n ∈ N. We say that a pair of
bimodule homomorphisms f : M → M and g : N → N is special if f(m)n+mg(n) =
0 = nf(m)+g(n)m for all m ∈ M and n ∈ N.

A special pair of bimodule homomorphisms f : M → M and g : N → N is of the
standard form if there exist a0 ∈ Z(A),b0 ∈ Z(B) such that f(m) = a0m+mb0 and
g(n) =−na0 −b0n for all m ∈ M,n ∈ N.
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Now we should mention some important results which are subsequently used in
this article.

Lemma 1 ([9, Corollary 2.4]). Let φ : A ×A → A be a biderivation. Then

φ(x,y)[u,v] = [x,y]φ(u,v) for all x,y,u,v ∈ A .

Lemma 2 ([12, Proposition 3.3]). Let G be a generalized matrix algebra such that
(1) for each n ∈ N the condition Mn = 0 = nM implies n = 0,
(2) every (A,B)-bimodule homomorphism of M has the standard form.

Then each special pair of bimodule homomorphisms f : M → M and g : N → N has
the standard form.

Lemma 3 ([12, Proposition 3.4]). Suppose that every derivation of a generalized
matrix algebra G is inner. Then every special pair of bimodule homomorphisms
f : M → M and g : N → N has the standard form.

3. KEY CONTENT

In this part, we study significant results of the article and we initiate with the
following basic facts:

Lemma 4. Let G be a generalized matrix algebra and φ : G×G×G→ G be a
3-derivation. If [x,y] = 0, then φ(x,y,z)∈ M+N ∀ x,y,z ∈G. Moreover, suppose that

(1) for each n ∈ N the condition Mn = 0 = nM implies n = 0,
(2) for each m ∈ M the condition mN = 0 = Nm implies m = 0,

then φ(x,y,z) = 0 for all x,y,z ∈G.

Proof. Define a map φz : G×G→G for some fix z ∈G by

φz(x,y) = φ(x,y,z) for all x,y ∈G.

Thence φz is a biderivation on G and with [9, Corollory 2.4], we find that

φz(x,y)[u,v] = [x,y]φz(u,v)

φ(x,y,z)[u,v] = [x,y]φ(u,v,z) for all x,y,z,u,v ∈G. (3.1)

Again, we define a map ψy : G×G→G for any fixed y ∈G by

ψy(x,z) = φ(x,y,z) for all x,y,z ∈G.

It follows that

φ(x,y,z)[u,v] = [x,z]φ(u,y,v) for all x,y,z,u,v ∈G. (3.2)

On comparison of (3.1) and (3.2), we find that

[x,y]φ(u,v,z) = [x,z]φ(u,y,v) for all x,y,z,u,v ∈G. (3.3)

Further (3.2) can be rewritten as

φ(x,v,y)[u,z] = [x,y]φ(u,v,z) for all x,y,z,u,v ∈G. (3.4)
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From (3.1) and (3.4), we find that

φ(x,y,z)[u,v] = φ(x,v,y)[u,z] for all x,y,z,u,v ∈G. (3.5)

In view of (3.1), we obtain

φ(x,y,z)[e,m] = [x,y]φ(e,m,z) = 0

[e,m]φ(x,y,z) = φ(e,m,z)[x,y] = 0.

Implying to φ(x,y,z)M = 0 = Mφ(x,y,z) for all x,y,z ∈G and hence we have

eφ(u,v,z)eM = 0 = M f φ(u,v,z) f ,

f φ(u,v,z)eM = 0 = M f φ(u,v,z)e ∀ u,v,z ∈G.
(3.6)

Since M is a faithful left A-module and a faithful right B-module, we find eφ(u,v,z)e
= 0 = f φ(u,v,z) f . Hence φ(u,v,z) = eφ(u,v,z) f + f φ(u,v,z), that is, φ(u,v,z) ∈ M+
N for all u,v,z ∈G.

Now, suppose that the conditions (1) and (2) are true. It follows from (3.6),
f φ(u,v,z)e = 0. Similarly, we can show that eφ(u,v,z) f = 0. Therefore, φ(u,v,z) = 0
for all u,v,z ∈G. □

Now it is easy to verify following lemma:

Lemma 5. Let φ : G×G×G→G be a 3-derivation. Then
(1) φ(x,y,1) = φ(1,x,y) = φ(x,1,y) = 0 for all x,y ∈G,
(2) φ(x,y,0) = φ(0,x,y) = φ(x,0,y) = 0 for all x,y ∈G,
(3) φ(e,e,e) =−φ(e,e, f ) = φ(e, f , f ) =−φ( f , f , f )

= φ( f ,e, f ) =−φ(e, f ,e) =−φ( f ,e,e) = φ( f , f ,e).

Proposition 1. Let G be a generalized matrix algebra over a commutative ring R
and φ : G×G×G→G be a 3-derivation on G. Suppose that φ satisfies

(1) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),
(2) If αa = 0,α ∈ Z(G),0 ̸= a ∈G, then α = 0.
(3) If MN = 0 = NM, then at least one of the algebras A and B is noncommut-

ative.
(4) Every special pair of bimodule homomorphisms has the standard form.

Then every 3-derivation φ : G×G×G→ G is an extremal 3-derivation ζ such that
ζ(x1,x2,x3) = [x1, [x2, [x3,φ(e,e,e)]]], where φ(e,e,e) /∈ Z(G).

Proof. Let φ be a 3-derivation with φ(e,e,e) ̸= 0 and φ(e,e,e) /∈ Z(G). Then with
Lemma 4, we see that φ(x,y,z) /∈ Z(G). From (3.1) it follows that

φ(e,e,e)[u,v] = [e,e]φ(u,v,e) = 0 for all u,v ∈G,

[x,y]φ(e,e,e) = φ(x,y,e)[e,e] = 0 for all x,y ∈G,

this leads to [φ(e,e,e), [G,G]] = 0, then the map defined by

ζ(x,y,z) = [x, [y, [z,φ(e,e,e)]]]
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is an extremal 3-derivation of G. We note that

ζ(e,e,e) = [e, [e, [e,φ(e,e,e)]]]

= [e, [e, [e,eφ(e,e,e) f − f φ(e,e,e)e]]]

= eφ(e,e,e) f + f φ(e,e,e)e = φ(e,e,e).

Let ψ= φ−ζ. Then ψ is a 3-derivation of G satisfying ψ(e,e,e) = 0. Now we have to
show that every 3-derivations ψ = 0 with ψ(e,e,e) = 0. We will prove this argument
via following sequence of claims:

Claim 1. For any x ∈ A∪B, m ∈ M and n ∈ N, we have
(i) ψ(x,y,m) = ψ(y,x,m) = ψ(x,m,y) = ψ(y,m,x) = ψ(m,x,y) = ψ(m,y,x) = 0

for all y ∈ A∪M∪B,
(ii) ψ(x,y,n) =ψ(y,x,n) =ψ(x,n,y) =ψ(y,n,x) =ψ(n,x,y) =ψ(n,y,x) = 0 for

all y ∈ A∪N∪B.
(iii) ψ(x,y,z) = 0 for all y,z ∈ A∪B.

Since ψ(e,e,e) = 0, we find that

ψ(a1,a2,a3) = ψ(ea1e,a2,a3)

= eψ(a1,a2,a3)e+ψ(e,a2,a3)a1 +a1ψ(e,a2,a3)

= eψ(a1,a2,a3)e+ f ψ(e,ea2e,a3)a1 +a1ψ(e,ea2e,a3) f

= eψ(a1,a2,a3)e+ f ψ(e,e,ea3e)a2a1 +a1a2ψ(e,e,ea3e) f

= eψ(a1,a2,a3)e+ f ψ(e,e,e)a3a2a1 +a1a2a3ψ(e,e,e) f

= eψ(a1,a2,a3)e ∈ A. (3.7)

for all a1,a2,a3 ∈A. Since ψ( f , f , f )=−ψ(e,e,e)= 0 and by similar calculation, we
have ψ(b1,b2,b3)∈B for all b1,b2,b3 ∈B. Also note that ψ(e,e, f )=−ψ(e,e,e)= 0.
Then in view of Lemma 4, we have

ψ(a1,a2,b) = eψ(a1,a2,b) f + f ψ(a1,a2,b)e

= eψ(ea1e,a2,b) f + f ψ(ea1e,a2,b)e

= a1ψ(e,ea2e,b) f + f ψ(e,ea2e,b)a1

= a1a2ψ(e,e, f b f ) f + f ψ(e,e, f b f )a2a1

= a1a2ψ(e,e, f )b+bψ(e,e, f )a2a1 = 0. (3.8)

for all a1,a2 ∈ A and b ∈ B. In view of (3.7), for any x ∈ A,y ∈ A,m ∈ M, we have

ψ(x,y,m) = ψ(x,y,em f )

= emψ(x,y, f )+ψ(x,y,em) f

= emψ(x,y, f )e+ eψ(x,y,m) f + f ψ(x,y,e)m f

= eψ(x,y,m) f ∈ M.
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Similarly, we can have ψ(x,y,m) ∈ M for all x ∈ A∪B,y ∈ A∪M∪B and m ∈ M.
With similar reasons, we can obtain ψ(x,y,n)∈ N for all x ∈ A∪B,y ∈ A∪N∪B,n ∈
N and also rest of the cases.

For fix y ∈ G, define maps f : M → M and g : N → N by f(m) = eψ(e,y,m) f and
g(n) = f ψ(e,y,n)e for all m ∈ M, n ∈ N respectively. Then f and g are bimodule
homomorphisms. Namely for all a ∈ A,b ∈ B,m ∈ M we get

f(amb) = eψ(e,y,amb) f

= eψ(e,y,a)mb+aψ(e,y,m)b+amψ(e,y,b) f

= aψ(e,y,m)b = af(m)b.

Similarly we obtain that g(bna) = bg(n)a for all n ∈ N. Moreover, we find that

f(m)n+mg(n) = eψ(e,y,m) f n+m f ψ(e,y,n)e = eψ(e,y,mn)e = 0,

g(n)m+nf(m) = f ψ(e,y,n)em+neψ(e,y,m) f = f ψ(e,y,nm) f = 0.

By assumption (4) the bimodule homomorphisms f , g have the standard form, then

f(m) = a0m+mb0 and g(n) =−na0 −b0n for a0 ∈ Z(A),b0 ∈ Z(B).

With assumption (1), we see that a0 ∈ πA(Z(G)) and b0 ∈ πB(Z(G)). We may write

f(m) = (a0 +η
−1(b0))m = αym for all m ∈ M,

g(n) =−n(a0 +η
−1(b0)) =−nαy for all n ∈ N,

where αy = a0 +η−1(b0) ∈ πA(Z(G)) (depending on y). Suppose first that MN ̸= 0
or NM ̸= 0. Then by (3.5) we have

ψ(e,y,m)[ f ,n] = ψ(e,n,y)[ f ,m]

=⇒ eψ(e,y,m)n =−eψ(e,n,y)m

αymne =−eψ(e,n,y)me
αyMN = 0 for all y ∈G.

Further with (3.4), we obtain that

[ f ,n]ψ(e,y,m) = [ f ,m]ψ(e,n,y)

nψ(e,y,m) f =−mψ(e,n,y) f

f nαym =− f mψ(e,n,y) f

η(αy)NM = 0 for all y ∈G.

The assumption (2) imply αy = 0 or η(αy) = 0 and hence αy = 0 for all y ∈G.
Suppose next that MN = 0 = NM. By assumption (3), one of A and B is noncom-

mutative. Without loss of generality, assume B is a noncommutative algebra and let
b1,b2 ∈ B be fixed elements with [b1,b2] ̸= 0. With eψ(e,y,m) f = αym, we obtain

ψ(e,y,m)[b1,b2] = ψ(e,b2,y)[b1,m]
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αym[b1,b2] =−eψ(e,b2,y)mb1

mη(αy)[b1,b2] =−eψ(e,b2,y)mb1

Mη(αy)[b1,b2] = 0 for all y ∈G.

The faithfulness of M as a right B-module imply to η(αy)[b1,b2] = 0 and from the
assumption (2), we get η(αy) = 0 and hence αy = 0 for all y ∈ G. It follows that
eψ(e,y,m) f = 0 for all y ∈G and m ∈ M. For any a ∈ A and y ∈ A∪M∪B, we have

ψ(a,y,m) = eψ(ae,y,m) f

= aψ(e,y,m) f + eψ(a,y,m)e f = 0.

Likewise, we have ψ(b,y,m) = 0 for all b ∈ B. Therefore, ψ(x,y,m) = 0 for all x ∈
A∪B,y ∈ A∪M∪B and m ∈ M. Similarly, we can prove the other relations of part
(ii) and part (iii) also.

In view of (3.1) and (ii), for any m ∈ M

ψ(a1,a2,a3)[e,m] = [a1,a2]ψ(e,m,a3)

=⇒ ψ(a1,a2,a3)m = [a1,a2]ψ(e,m,a3)

=⇒ ψ(a1,a2,a3)M = 0.

By faithfulness of M as a left A-module implies eψ(a1,a2,a3)e = 0 and hence
ψ(a1,a2,a3) = 0 for all a1,a2,a3 ∈ A. Taking into account (3.8), similarly we can
have the other cases of part (i).

Claim 2. For any m ∈ M and n ∈ N, we have

ψ(m1,m2,n) = ψ(m1,n,m2) = ψ(n,m1,m2) = 0 for all m1,m2 ∈ M,

ψ(n1,n2,m) = ψ(n1,m,n2) = ψ(m,n1,n2) = 0 for all n1,n2 ∈ N.

In view of Lemma 4, for any m1,m2 ∈ M and n ∈ N, we have

ψ(m1,m2,n) = eψ(m1,m2,ne) f + f ψ(m1,m2,ne)e

= f nψ(m1,m2,e)e+ f ψ(m1,m2,n)e

= f ψ(m1,em2,n)e = 0.

In similar manner, we can find the other relations.

Claim 3. For any x ∈ A∪B,m ∈ M and n ∈ N, we have

ψ(x,n,m) = ψ(n,x,m) =ψ(x,m,n) = ψ(n,m,x) = ψ(m,x,n) = ψ(m,n,x) = 0,

ψ(x,m,n) = ψ(m,x,n) =ψ(x,n,m) = ψ(m,n,x) = ψ(n,x,m) = ψ(n,m,x) = 0.

For any m ∈ M, n ∈ N, we find that

ψ(x,n,m) = ψ(x,n,em)

= eψ(x,n,m)+ψ(x,n,e)m

= eψ(x, f n,m) = 0.
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Similarly, we can prove rest of the cases.

Claim 4. ψ(m,m1,m2) = 0 ∀ m,m1,m2 ∈ M, and ψ(n,n1,n2) = 0 ∀ n,n1,n2 ∈ N.

In view of Lemma 4, it is easy to see that

ψ(m,m1,m2) = eψ(m,em1,m2) f + f ψ(m,em1,m2)e

= eψ(m,m1,m2) f ∈ M for all m,m1,m2 ∈ M.

For fix m′,m′′ ∈ M, the map l : M → M defined by l(m) = ψ(m,m′,m′′) for all m ∈ M
is a bimodule homomorphism.

l(amb) = ψ(amb,m′,m′′)

= ψ(am,m′,m′′)b+amψ(b,m′,m′′)

= aψ(m,m′,m′′)b+ψ(a,m′,m′′)mb+amψ(b,m′,m′′)

= aψ(m,m′,m′′)b = al(m)b.

Now we have to show that l(m)n = 0 = nl(m) for all m ∈ M, n ∈ N.

ψ(mn,m′,m′′) = mψ(n,m′,m′′)e+ψ(m,m′,m′′)n

0 = ψ(m,m′,m′′)n = l(m)n.

Similarly, we can obtain that nl(m) = 0 for all m ∈ M and n ∈ N.
Likewise, we have ψ(n,n1,n2) ∈ N. Fix n′,n′′ ∈ N, the map h : N → N defined

by h(n) = ψ(n,n′,n′′) is a bimodule homomorphism and h(bna) = bh(n)a for all
a ∈ A,b ∈ B,n ∈ N. Also, we can see that h(n)m = 0 = mh(n) for all m ∈ M,n ∈ N.
Particularly, we see k and h are a special pair of bimodule homomorphisms. By
assumptions (1) and (4), we get k(m) = γm′,m′′m and h(n) =−nγm′,m′′ , where γm′,m′′ ∈
πA(Z(G)). Suppose first that MN ̸= 0 or NM ̸= 0. Then

γm′,m′′mn = k(m)n = 0 = nk(m) = nγm′,m′′m.

That is, γm′,m′′MN = 0 = η(γm′,m′′)NM. The assumption (2) implies that γm′,m′′ = 0 or
η(γm′,m′′) = 0. So γm′,m′′ = 0. Hence k(m) = 0 = h(n) for all m ∈ M,n ∈ N.

Suppose next that MN = 0 = NM. The assumption (3) implies that one of A and
B is noncommutative. Without loss of generality, we assume that B is a noncom-
mutative algebra and let b1,b2 ∈ B be fixed elements with [b1,b2] ̸= 0. By (3.1) and
ψ(m,m′,m′′) = γm′,m′′m, we obtain that

ψ(m,m′,m′′)[b1,b2] = [m,m′]ψ(b1,b2,m′′)

γm′,m′′m[b1,b2] = 0

Mη(γm′,m′′)[b1,b2] = 0.

By faithfulness of the right B-module M, η(γm′,m′′)[b1,b2] = 0 and by assumption
(2), we get η(γm′,m′′) = 0 and hence γm′,m′′ = 0. Therefore, k(m) = 0 = h(n) for all
m ∈ M,n ∈ N. This proves our claim.
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Thence, we see that ψ(x,y,z) = 0 for all x,y,z ∈ G. Since ψ is linear in each
argument, we obtain that ψ = 0. This completes the proof. □

Proposition 2. Let G be a generalized matrix algebra over a commutative ring R
and φ : G×G×G→G be a 3-derivation on G. Suppose that φ satisfies

(1) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),
(2) For each m ∈ M, the condition mN = 0 = Nm implies m = 0.
(3) For each n ∈ N, the condition Mn = 0 = nM implies n = 0.
(4) Every special pair of bimodule homomorphisms has the standard form.

Then every 3-derivation φ : G×G×G→ G is an extremal 3-derivation ζ such that
ζ(x1,x2,x3) = [x1, [x2, [x3,φ(e,e,e)]]], where φ(e,e,e) /∈ Z(G).

Proof. The whole proof is similar to proof of Proposition 1 except some modi-
fications in Claim 1 & Claim 4 according to the assumptions of present proposition.
Now we attempt to rewrite these proofs as follows:

Let φ be a 3-derivation with φ(e,e,e) ̸= 0 and φ(e,e,e) /∈ Z(G). It is easy to see
[φ(e,e,e), [G,G]] = 0 and the map ζ(x,y,z) = [x, [y, [z,φ(e,e,e)]]] is an extremal 3-
derivation of G. Also note that ζ(e,e,e) = φ(e,e,e). Let ψ = φ − ζ. Then ψ is a
3-derivation of G satisfying ψ(e,e,e) = 0.

Now we have to show that every 3-derivations ψ = 0 with ψ(e,e,e) = 0. We will
verify this argument via upcoming sequence of claims:

Claim 5. For any x ∈ A∪B, m ∈ M and n ∈ N, we have
(i) ψ(x,y,m) = ψ(y,x,m) = ψ(x,m,y) = ψ(y,m,x) = ψ(m,x,y) = ψ(m,y,x) = 0

for all y ∈ A∪M∪B,
(ii) ψ(x,y,n) = ψ(y,x,n) = ψ(x,n,y) = ψ(y,n,x) = ψ(n,x,y) = ψ(n,y,x) = 0 for

all y ∈ A∪N∪B.
(iii) ψ(x,y,z) = 0 for all y,z ∈ A∪B.

It is easy to verify that ψ(x,y,m)∈ M for all y ∈ A∪M∪B,x ∈ A∪B and ψ(x,y,n)
∈ N for all y ∈ A∪N∪B,x ∈ A∪B and rest of the cases follow similarly. For fix
y ∈ G, define maps f : M → M and g : N → N by f(m) = eψ(e,y,m) f and g(n) =
f ψ(e,y,n)e for all m∈M,n∈N respectively. Then f and g are bimodule homomorph-
isms. For all a ∈ A,b ∈ B,m ∈ M,n ∈ N, we have f(amb) = af(m)b and g(bna) =
bg(n)a. Moreover, f(m)n+mg(n) = 0 = g(n)m+ nf(m) for all m ∈ M,n ∈ N. By
assumption (4) the bimodule homomorphism f and g have the standard form, then

f(m) = a0m+mb0 and g(n) =−na0 −b0n f or a0 ∈ Z(A),b0 ∈ Z(B).

Now we use the assumption (1) to see that a0 ∈ πA(Z(G)) and b0 ∈ πB(Z(G)). We
may write

f(m) = (a0 +η
−1(b0))m = αym for all m ∈ M,

g(n) =−n(a0 +η
−1(b0)) =−nαy for all n ∈ N,
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where αy = a0 +η−1(b0) ∈ πA(Z(G)) (depending on y). By (3.5) we have

ψ(e,y,m)[ f ,n] = ψ(e,n,y)[ f ,m]

eψ(e,y,m)ne =−eψ(e,n,y)me

eψ(e,y,m) f N = 0 for all y ∈G.

Further with (3.4), we obtain that

[ f ,n]ψ(e,y,m) = [ f ,m]ψ(e,n,y)

f nψ(e,y,m) f =− f mψ(e,n,y) f

Neψ(x,y,m) f = 0 for all y ∈G.

The above two expression with assumption (2) imply f(m) = eψ(e,y,m) f = 0 for all
y ∈G. Now for any a ∈ A and y ∈ A∪M∪B, we may write

ψ(a,y,m) = eψ(ae,y,m) f

= aψ(e,y,m) f + eψ(a,y,m)e f = 0.

Likewise, we have ψ(b,y,m) = 0 for all b ∈ B. Therefore, ψ(x,y,m) = 0 for all x ∈
A∪B,y ∈ A∪M∪B and m ∈ M. Similarly, we can prove the other relations of part
(ii) and part (iii) also.

Claim 6. For any m ∈ M and n ∈ N, we have

ψ(m1,m2,n) = ψ(m1,n,m2) = ψ(n,m1,m2) = 0 for all m1,m2 ∈ M,

ψ(n1,n2,m) = ψ(n1,m,n2) = ψ(m,n1,n2) = 0 for all n1,n2 ∈ N.

Claim 7. For any x ∈ A∪B,m ∈ M and n ∈ N, we have

ψ(x,n,m) = ψ(n,x,m) =ψ(x,m,n) = ψ(n,m,x) = ψ(m,x,n) = ψ(m,n,x) = 0,

ψ(x,m,n) = ψ(m,x,n) =ψ(x,n,m) = ψ(m,n,x) = ψ(n,x,m) = ψ(n,m,x) = 0.

Claim 8. ψ(m,m1,m2) = 0 ∀ m,m1,m2 ∈ M, and ψ(n,n1,n2) = 0 ∀ n,n1,n2 ∈ N.

In view of Lemma 4 and assumptions (2), (3), we can have ψ(m,m1,m2) = 0 for
all m,m1,m2 ∈ M, and ψ(n,n1,n2) = 0 for all n,n1,n2 ∈ N.

Thence, we see that ψ(x,y,z) = 0 for all x,y,z ∈ G. Since ψ is linear in each
argument, we obtain that ψ = 0. Therefore, φ is an extremal 3-derivation ζ. □

At this moment, we are equipped to demonstrate a significant result of this article
for n ≥ 3 as below:

Theorem 1. Let G be a generalized matrix algebra over a commutative ring R
and φ : G×G× ·· · ×G → G be a n-derivation (for n ≥ 3) on G. Suppose that φ

satisfies
(1) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),
(2) If αa = 0,α ∈ Z(G),0 ̸= a ∈G, then α = 0.
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(3) If MN = 0 = NM, then at least one of the algebras A and B is noncommut-
ative.

(4) Every special pair of bimodule homomorphisms has the standard form.
Then every n-derivation φ : G×G×·· ·×G→G is an extremal n-derivation ζ such
that ζ(x1,x2, . . . ,xn) = [x1, [x2, . . . , [xn,φ(e,e, . . . ,e)] . . .]], where φ(e,e, . . . ,e) /∈ Z(G).

Proof. For n = 3 result follows from the Proposition 1. For n ≥ 4 we apply induc-
tion method. Now fix x4, . . . ,xn ∈G. Set

φx4,...,xn(x1,x2,x3) = φ(x1,x2,x3,x4, . . . ,xn) for all x1,x2,x3 ∈G.

Then φx4,...,xn(x1,x2,x3) is a 3-derivation. By Proposition 1, it follows that

φx4,...,xn(x1,x2,x3) = [x1, [x2, [x3,φ(e,e,e)]]] for all x1,x2,x3 ∈G,

where φ(e,e,e) /∈ Z(G) (depending on x4, . . . ,xn) with the property [φ(e,e,e), [G,G]]
= 0. Particularly, we have that φx4,...,xn(e,e,e) = y and so φ(e,e,e,x4, . . . ,xn) = y for
all y /∈ Z(G). Hence

φ(x1,x2, . . . ,xn) = [x1, [x2, [x3,φ(e,e,e,x4, . . . ,xn)]]] for all x1,x2, . . . ,xn ∈G. (3.9)

Clearly, φ(e,x2,x3, . . . ,xn) is a (n−1)-derivation on G. By induction, we get

φ(e,x2,x3, . . . ,xn) = [x2, [x3, . . . , [xn,φ(e,e, . . . ,e)] . . .]]

for all x2, . . . ,xn ∈G, where φ(e,e, . . . ,e) /∈ Z(G) and [φ(e,e, . . . ,e), [G,G]] = 0. Par-
ticularly,

φ(e,e,e,x4, . . . ,xn) = [x4, [x5, . . . , [xn,φ(e,e, . . . ,e)] . . .]]

for all x4, . . . ,xn ∈G, where we used that φ(e,e, . . . ,e) /∈ Z(G). From (3.9) we have

φ(x1,x2,x3, . . . ,xn) = [x1, [x2, . . . , [xn,φ(e,e, . . . ,e)] . . .]]

for all x1,x2, . . . ,xn ∈G. Hence we obtain the expected result. □

In view of [12, Proposition 3.4], we come with the following consequence:

Corollary 1. Let G be a generalized matrix algebra over a commutative ring R
and φ : G×G× ·· · ×G → G be a n-derivation (for n ≥ 3) on G. Suppose that φ

satisfies
(1) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),
(2) If αa = 0,α ∈ Z(G),0 ̸= a ∈G, then α = 0.
(3) If MN = 0 = NM, then at least one of the algebras A and B is noncommut-

ative.
(4) Every derivation G is inner.

Then every n-derivation φ : G×G×·· ·×G→G is an extremal n-derivation ζ such
that ζ(x1,x2, . . . ,xn) = [x1, [x2, . . . , [xn,φ(e,e, . . . ,e)] . . .]], where φ(e,e, . . . ,e) /∈ Z(G).

Forthwith, we present another significant result of this article as follows:
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Theorem 2. Let G be a generalized matrix algebra over a commutative ring R
and φ : G×G× ·· · ×G → G be a n-derivation (for n ≥ 3) on G. Suppose that φ

satisfies
(1) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),
(2) For each m ∈ M, the condition mN = 0 = Nm implies m = 0.
(3) For each n ∈ N, the condition Mn = 0 = nM implies n = 0.
(4) Every special pair of bimodule homomorphisms has the standard form.

Then every n-derivation φ : G×G×·· ·×G→G is an extremal n-derivation ζ such
that ζ(x1,x2, . . . ,xn) = [x1, [x2, . . . , [xn,φ(e,e, . . . ,e)] . . .]], where φ(e,e, . . . ,e) /∈ Z(G).

Proof. In view of Proposition 2, proof is similar to the proof of Theorem 1. □

On account of [12, Proposition 3.3, Proposition 3.4], we come with the following
results respectively.

Corollary 2. Let G be a generalized matrix algebra over a commutative ring R
and φ : G×G× ·· · ×G → G be a n-derivation (for n ≥ 3) on G. Suppose that φ

satisfies
(1) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),
(2) For each m ∈ M, the condition mN = 0 = Nm implies m = 0.
(3) For each n ∈ N, the condition Mn = 0 = nM implies n = 0.
(4) Every (A,B)-bimodule homomorphism of M is of the standard form.

Then every n-derivation φ : G×G×·· ·×G→G is an extremal n-derivation ζ such
that ζ(x1,x2, . . . ,xn) = [x1, [x2, . . . , [xn,φ(e,e, . . . ,e)] . . .]], where φ(e,e, . . . ,e) /∈ Z(G).

Corollary 3. Let G be a generalized matrix algebra over a commutative ring R
and φ : G×G× ·· · ×G → G be a n-derivation (for n ≥ 3) on G. Suppose that φ

satisfies
(1) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),
(2) For each m ∈ M, the condition mN = 0 = Nm implies m = 0.
(3) For each n ∈ N, the condition Mn = 0 = nM implies n = 0.
(4) Every derivation G is inner.

Then every n-derivation φ : G×G×·· ·×G→G is an extremal n-derivation ζ such
that ζ(x1,x2, . . . ,xn) = [x1, [x2, . . . , [xn,φ(e,e, . . . ,e)] . . .]], where φ(e,e, . . . ,e) /∈ Z(G).

4. APPLICATIONS

On application of our significant results to some classical examples of generalized
matrix algebras, we prevail the following consequences:

Corollary 4. Let Ms(R) be the algebra of all s× s matrices over a commutative
ring R, where s ≥ 2 is an integer. Then every n-derivation (for n ≥ 3) is an extremal
n-derivation on Ms(R).
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Corollary 5 ([18, Theorem 2]). Let T= Tri(A,M,B) be a triangular algebra. If
the following conditions hold:

(1) πA(Z(T)) = Z(A) and πB(Z(T)) = Z(B),
(2) either A or B does not contain nonzero central ideals,
(3) each derivation of A is inner,

then every n-derivation (n ≥ 3) φ : T×T×·· ·×T→ T is an extremal n-derivation.

5. FOR FUTURE DISCUSSIONS

In this part, we make an effort to collect a few specific queries related to the lit-
erature of the article. But before that, we should bring up some basic notions of
related subject matter. In view of [5, Propostion 2.1, 2.2], we can write the structure
of automorphisms on generalized matrix algebras respectively as follows:

Lemma 6. Let G=G(A,M,N,B) be a generalized matrix algebra and (γ,δ,µ,ν,
m0,n0) be a 6-tuple such that γ : A → A & δ : B → B are algebraic automorphisms,
µ : M → M is a γ−δ−bimodule automorphism, ν : N → N is a δ−γ−bimodule auto-
morphism and m0 ∈ M & n0 ∈ N are fixed elements such that following conditions
are satisfied:

(i) [m0,N] = 0 and (N,m0) = 0,
(ii) [M,n0] = 0 and (n0,M) = 0,
(iii) [µ(m),ν(n)] = γ([m,n]) and (ν(n),µ(m)) = δ((n,m)).

Then the map α1 : G→G defined by

α1

([
a m
n b

])
=

[
γ(a) γ(a)m0 −m0δ(b)+µ(m)

n0γ(a)−δ(b)n0 +ν(n) δ(b)

]
is an algebraic automorphism.

Lemma 7. Let G=G(A,M,N,B) be a generalized matrix algebra and (ρ,σ,µ,ν,
m∗,n∗) be a 6-tuple such that ρ : A → B & σ : B → A are algebraic automorph-
isms, µ : (M,+)→ (N,+) & ν : (N,+)→ (M,+) are group automorphisms such that
µ(amb) = ρ(a)µ(m)σ(b) & ν(bna) =σ(b)ν(n)ρ(a) for all a∈A,b∈B,m∈M,n∈N
and m∗ ∈ M & n∗ ∈ N are fixed elements such that following conditions are satisfied:

(i) [m∗,N] = 0 and (N,m∗) = 0,
(ii) [M,n∗] = 0 and (n∗,M) = 0,
(iii) (µ(m),ν(n)) = ρ([m,n]) and [ν(n),µ(m)] = σ((n,m)).

Then the map α2 : G→G defined by

α2

([
a m
n b

])
=

[
σ(a) m∗ρ(a)−σ(b)m∗+ν(n)

ρ(a)n∗−n∗σ(b)+µ(m) ρ(b)

]
is an algebraic automorphism.
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Let α be an automorphism on R-algebra A . An R-linear map d : A → A is said to
be an α-derivation if d(xy)= d(x)y+α(x)d(y) ∀ x,y∈A . An R-linear map g : A →A
is said to be a generalized α-derivation associated with an α-derivation d if g(xy) =
g(x)y+α(x)d(y) for all x,y ∈ A . An n-linear map Φ : A ×A ×·· ·×A → A is said
to be a generalized α−n−derivation, if it is a generalized α-derivation in each com-
ponent. In particular, a generalized α−2−derivation is a generalized α-biderivation.
Also, if α = IA , then a generalized IA −n−derivation is a generalized n−derivation.
Now in view of [9, 16], it is reasonable to raise the following questions as:

Question 1. What is the most general form of generalized n-derivations on trian-
gular algebras and which constraints are needed to apply on triangular algebras?

Question 2. What is the most general form of generalized α-biderivations on gen-
eralized matrix algebras and which constraints are needed to apply on generalized
matrix algebras?

In general, one can also explore the following query:

Question 3. What is the most general form of generalized α− n−derivations on
generalized matrix algebras and which constraints are needed to apply on general-
ized matrix algebras?
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[8] M. Brešar, “On certain pairs of functions of semiprime rings,” Proc. Amer. Math. Soc., vol. 120,
no. 3, pp. 709–713, 1994, doi: 10.2307/2160460.
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