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Abstract. In this paper, we concern with the concept of well-posedness and well-posedness in
generalized sense for a system of mixed hemivariational inequality (SMHVI) with perturbations.
We establish several metric characterizations and equivalent conditions of well-posedness for
SMHVI. Our main results improve and extend some announced work in the literature.
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1. INTRODUCTION

The theory of well-posedness in optimization problems and various comprehens-
ive problems correlated to it such as variational inequalities, fixed point problems,
equilibrium problems, saddle point problems, and inclusion problems has been paid
deep impact attention by researchers due to their essential contributions to physics,
mechanics, engineering, and economics. Tykhonov [20] first proposed the concept
of well-posedness for the unconstrained global minimization problems, i.e., a min-
imization problem is well-posed, if it possesses a unique minimizer and the limit of
every subsequence of the minimizing sequence is the unique minimizer. Indeed, an
optimization problem may not have a unique solution. Hence, the notion of gen-
eralized well-posedness was introduced, which enhances the precise solution of the
problem, under some mild conditions, by ensuring the convergence of every approx-
imating solutions to the exact solution. Accordingly, the approximating approach
captured the concept of well-posedness that plays a vital aspect in well-posedness
theory. For more related research works concerning to the well-posedness results
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of optimization problems, we refer to [11, 14]. Later, the notion of well-posedness
turned toward variational inequalities in different aspects. Lucchetti and Patrone [17]
first studied and developed the concept of well-posedness for variational inequalit-
ies by Ekeland’s technique. From then on, researchers are dedicated to investigate
the well-posedness for variational inequalities and build their links with the well-
posedness of inclusion and minimization problems. Lignola [13] and Lignola and
Morgan [14] coined the notion of L−well-posedness for quasivariational inequalit-
ies and parametric well-posedness for variational inequalities, respectively. Ceng et
al. [3] explored various necessary and sufficient conditions of the well-posedness for
the mixed quasivariational-like inequalities. Meanwhile, Fang et al. [8, 9] demon-
strated different forms of well-posedness results for mixed variational inequalities,
which were further generalized by Ceng et al. [2]. In the works of [4, 8, 9], the
authors discussed various necessary and sufficient metric characterizations of well-
posedness. There, the authors also elaborated on the corresponding inclusion prob-
lems as well as the corresponding fixed point problems and established the equivalent
relations between the well-posedness of mixed variational inequalities and their cor-
responding inclusion problems.

In the last decade, the study of well-posedness devoted special attention to hemi-
variational inequality problem (HVIP), which is a powerful and important general-
ization of variational inequalities. The HVIP was first investigated and explored by
Panagiotopoulos [19] at the beginning of 1980s to formulate several classes of uni-
lateral mechanical problems with nonsmooth and nonconvex energy functional. The
HVIP is described through Clarke’s generalized gradient for nonconvex and nondif-
ferentiable functions. It is straightforward to see that if the involved functions are
convex, then the HVIP weakens to the variational inequality (see [6]). Consequently,
several extensive well-posedness results (for e.g. see, [2, 5, 10, 15, 22–24]) have been
investigated and widely discussed for HVIP. Goeleven and Mentagui [10] first con-
sidered the well-posedness consequences for HVIP. Xiao et al. [23] discussed the
well-posedness characterizations for a class of HVIP. Recently, Xiao et al. [24] also
explored the well-posedness results for hemivariational inequalities by utilizing the
notion of strongly relaxed monotonicity. By introducing α−η monotone mappings,
Liu et al. [15] established L−α well-posedness for mixed quasivariational hemivari-
ational inequality through Mosco convergence of sets. Xiao and Huang [22] proposed
the well-posedness results for variational-hemivariational inequalities with perturba-
tions. In 2013, Costea and Varga [7] considered the existence results for the system
of hemivariational inequality and also derived the Nash generalized derivative points.
Recently, Wang et al. [21] generalized the concept of well-posedness to a system of
hemivariational inequalities in product Banach space. Besides, the authors in [21–23]
also built the equivalence results between the well-posedness of the inequality prob-
lems and the well-posedness of its derived inclusion problems. Further, Ceng et al. [5]
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studied the well-posedness results for system of time-dependent hemivariational in-
equalities. However, the research works based on the well-posedness of solutions
for the system of hemivariational inequalities are quite limited due to the complex-
ity of its structure. The aim of this work is to develop the theoretical framework on
well-posedness for a new class of system of mixed hemivariational inequality with
perturbations.

Motivated by the aforesaid research works on well-posedness, in this work, our
aim is to introduce and generalize the concept of well-posedness for the SMHVI
with perturbations, which includes the HVIP as a special case. Section 2 briefly re-
visits some preliminary definitions and notations, which will be used to achieve the
main results. Section 3 formulates the SMHVI with perturbations and the concept of
approximating sequence as well as strong (resp., weak) well-posedness. Section 4 ex-
plores the necessary theorems and the metric characterizations for the well-posedness
of SMHVI.

2. PRELIMINARIES

Let X be a Banach space with dual space X∗. We signify ⟨·, ·⟩X∗×X as the duality

pairing between X∗ and X . We denote →,⇀ and w∗
−→ as the strong, weak and weak∗

convergence, respectively, in the appointed space.

Definition 1 ([18, Definition 1.31]). A sequence {xn} ⊂ X is weakly convergent
iff there exists x ∈ X s.t.

⟨x∗,xn⟩X∗×X → ⟨x∗,x⟩X∗×X , ∀ x∗ ∈ X∗.

Definition 2 ([18, Definition 1.42]). A sequence of functional {x∗n} ⊂ X∗ is called
weakly∗ convergent to x∗ ∈ X∗ iff

⟨x∗n,x⟩X∗×X → ⟨x∗,x⟩X∗×X , ∀ x ∈ X .

Theorem 1 ([18, Proposition 1.37 and Proposition 1.45]). If {xn} ⊂ X and {x∗n} ⊂
X∗ with xn → x (resp. xn ⇀ x) in X and x∗n

w∗
−→ x∗ (resp. x∗n → x∗) in X∗, then

⟨x∗n,xn⟩X∗×X → ⟨x∗,x⟩X∗×X .

A function φ : X → R∪{∞} is called lower semicontinuous (l.s.c.) if it fulfills

φ(x)≤ liminf
n→∞

φ(xn)

for all sequence xn ∈ X with xn → x.

Definition 3 ([21, Definition 2.13]). We say that a functional J : X → R is locally
Lipschitz, if for every z ∈ X , there exists a neighborhood V of z and a constant Kz > 0
s.t. |J(x)− J(y)| ≤ Kz∥x− y∥X for all x,y ∈V .
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Definition 4 ([21, Definition 2.16]). Let J : X → R be a locally Lipschitz func-
tional. We denote J◦(x;y) and ∂̄J(x) as the Clarke’s generalized directional derivat-
ive at the point x ∈ X in the direction y ∈ X and Clarke’s generalized gradient of J at
x ∈ X , respectively, which are defined as:

J◦(x;y) = limsup
w→x,ε→0+

J(w+ εy)− J(w)
ε

,

and ∂̄J(x) = {ξ ∈ X∗ : ⟨ξ,y⟩X∗×X ≤ J◦(x;y),∀ y ∈ X}, respectively.

Lemma 1 ([6, Proposition 2.1.1 and Proposition 2.1.2]). Let J : X →R be a locally
Lipschitz functional of rank L. Then

(i) the function y→ J◦(x;y) is finite, homogenous, subadditive on X and satisfies
|J◦(x;y)| ≤ L∥y∥X ;

(ii) the functional (x,y)→ J◦(x,y) is upper semicontinuous;
(iii) J◦(x;−y) = (−J)◦(x;y);
(iv) for each x ∈ X , ∂̄J(x) is a nonempty, convex, weak∗-compact subset of X∗ and

∥ξ∥X∗ ≤ L for all ξ ∈ ∂̄J(x);
(v) for each y ∈ X , one has J◦(x;y) = max

ξ∈∂̄J(x)
⟨ξ,y⟩X∗×X .

Definition 5 ([22, Definition 2.3]). The measure of non-compactness for the set
D ⊂ X is defined by

µ(D) = inf

{
γ > 0 : D ⊂

n⋃
i=1

Di, diam|Di|< γ, i = 1,2, . . . ,n

}
,

where diam|Di| denotes the diameter of the set Di.

If D is a bounded subset of X then µ(D) = 0 iff D is compact. Also, if D1 is a
subset of D2 then µ(D1)≤ µ(D2).

Definition 6 ([16, Definition 8.1.7]). Let C and D be two nonempty subsets of X .
The Hausdroff distance H (·, ·) between C and D is defined by

H (C,D) = max{e(C,D),e(D,C)},
where e(C,D) = sup

c∈C
d(c,D) with d(c,D) = inf

d∈D
∥c−d∥X .

Here, we want to emphasize that if {Cn} be a sequence of nonempty subsets of X .
Then we say that Cn converges to C with respect to H (·, ·) iff H (Cn,C)→ 0.

Definition 7 ([22, Definition 2.1 and Definition 2.2]). Let G : X → X∗ be a single-
valued operator, then G is

(i) hemicontinuous, iff for all x,y ∈ X , the function ε → ⟨G(x+ ε(y− x)),y−
x⟩X∗×X from [0,1] into R is continuous at 0+;

(ii) monotone, iff ⟨G(x)−G(y),x− y⟩X∗×X ≥ 0, ∀ x,y ∈ X .
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3. FORMULATION OF THE PROBLEM AND APPROXIMATING SEQUENCE

Let k ∈ N. For each i ∈ {1, . . . ,k}, let (Xi,∥ · ∥Xi) be a real Banach space with dual
space (X∗

i ,∥ · ∥X∗
i
). It is well-known that X1 × ·· · ×Xi × ·· · ×Xk is also a Banach

space with the product norm ∥x∥= ∑
k
i=1 ∥xi∥Xi , ∀ x = (x1, . . . ,xi, . . . ,xk) ∈ X1 ×·· ·×

Xi ×·· ·×Xk. For i ∈ {1, . . . ,k}, let Ai : X1 ×·· ·×Xi ×·· ·×Xk → X∗
i be a mapping

(nonlinear), Si : X1 ×·· ·×Xi ×·· ·×Xk → X∗
i be a perturbation, φi : Xi →R∪{∞} be

a proper, convex, and l.s.c. functional, fi ∈ X∗
i , and Ji : Xi →R be a locally Lipschitz

functional. The effective domain of φi is specified as:

dom(φi) = {xi ∈ Xi : φi(xi)< ∞} ̸=∅,

for i ∈ {1, . . . ,k}.
In this work, we are going to establish the well-posedness of the following SMHVI,

which consists in finding x = (x1, . . . ,xi, . . . ,xk) ∈ X1 ×·· ·×Xi ×·· ·×Xk s.t.

(SMHVI)



⟨A1(x)+S1(x)− f1,y1 − x1⟩X∗
1 ×X1 + J◦1 (x1;y1 − x1)

+φ1(y1)−φ1(x1)≥ 0, ∀ y1 ∈ X1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
⟨Ai(x)+Si(x)− fi,yi − xi⟩X∗

i ×Xi + J◦i (xi;yi − xi)

+φi(yi)−φi(xi)≥ 0, ∀ yi ∈ Xi,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
⟨Ak(x)+Sk(x)− fk,yk − xk⟩X∗

k ×Xk + J◦k (xk;yk − xk)

+φk(yk)−φk(xk)≥ 0, ∀ yk ∈ Xk,

where J◦i (xi;yi − xi) is the Clarke’s generalized directional derivative at xi ∈ Xi in the
direction yi −xi ∈ Xi. We denote θi as the zero element of X∗

i for i ∈ {1, . . . ,k} and Q
as the set of all solutions to SMHVI.

If k = 1, then the SMHVI weakens to the variational-hemivariational inequality,
whose well-posedness was considered by Xiao and Huang [22]. Furthermore, if k =
1 with S1 = θ1 and φ1 = 0, then the SMHVI is equivalent to the hemivariational
inequality, whose well-posedness was given by Xiao et al. [23]. Moreover, letting
k = 1 with S1 = θ1,J1 = 0, and φ1 = 0, SMHVI collapses to the classical variational
inequality, i.e.,

⟨A1(x1)− f1,y1 − x1⟩ ≥ 0, ∀ y1 ∈ X1.

Also, if k = 1 with A1 = θ1,S1 = θ1,J1 = 0 and f1 = 0 then SMHVI reduces to the
global minimization problem, i.e.,

min
x1∈X1

φ(x1).

To investigate the well-posedness of SMHVI, let us review some primitive definitions
and results.



862 K. MAHALIK AND C. NAHAK

Definition 8. The sequence xn = (xn
1, . . . ,x

n
i , . . . ,x

n
k) ∈ X1 × ·· · ×Xi × ·· · ×Xk is

an approximating sequence for SMHVI, if there exists a sequence {ρn} ⊂ R+ with
ρn → 0 as n → ∞ s.t.



⟨A1(xn)+S1(xn)− f1,y1 − xn
1⟩X∗

1 ×X1 + J◦1 (x
n
1;y1 − xn

1)+φ1(y1)−φ1(xn
1)

≥−ρn∥y1 − xn
1∥X1 , ∀ y1 ∈ X1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
⟨Ai(xn)+Si(xn)− fi,yi − xn

i ⟩X∗
i ×Xi + J◦i (x

n
i ;yi − xn

i )+φi(yi)−φi(xn
i )

≥−ρn∥yi − xn
i ∥Xi , ∀ yi ∈ Xi,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
⟨Ak(xn)+Sk(xn)− fk,yk − xn

k⟩X∗
k ×Xk + J◦k (x

n
k ;yk − xn

k)+φk(yk)−φk(xn
k)

≥−ρn∥yk − xn
k∥Xk , ∀ yk ∈ Xk.

(3.1)

Definition 9. The SMHVI is said to be strongly (resp., weakly) well-posed iff it
has a unique solution and every approximating sequence converges strongly (resp.,
weakly) to the unique solution.

Definition 10. The SMHVI is said to be strongly (resp., weakly) well-posed in
generalized sense iff Q is nonempty and every approximating sequence has a sub-
sequence which converges strongly (resp., weakly) to some point of Q.

Remark 1. Definition 9 and Definition 10 extend the definition of well-posedness
studied in [8, 10, 21–24]. Also, it is worth noting that strong well-posedness (in
the generalized sense) implies the weak well-posedness (in the generalized sense),
however, the converse is not true in general.

For any ρ > 0, we define the sets ϒ(ρ) and Ψ(ρ) in X1 ×·· ·×Xi ×·· ·×Xk as:

ϒ(ρ) =



(x1, . . . ,xi, . . . ,xk) ∈ X1 ×·· ·×Xi ×·· ·×Xk :
⟨A1(x1, . . . ,xi, . . . ,xk)+S1(x1, . . . ,xi, . . . ,xk)− f1,y1 − x1⟩X∗

1 ×X1

+J◦1 (x1;y1 − x1)+φ1(y1)−φ1(x1)≥−ρ∥y1 − x1∥X1 , ∀ y1 ∈ X1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
⟨Ai(x1, . . . ,xi, . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi,yi − xi⟩X∗

i ×Xi

+J◦i (xi;yi − xi)+φi(yi)−φi(xi)≥−ρ∥yi − xi∥Xi , ∀ yi ∈ Xi,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
⟨Ak(x1, . . . ,xi, . . . ,xk)+Sk(x1, . . . ,xi, . . . ,xk)− fk,yk − xk⟩X∗

k ×Xk

+J◦k (xk;yk − xk)+φk(yk)−φk(xk)≥−ρ∥yk − xk∥Xk , ∀ yk ∈ Xk,
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and

Ψ(ρ) =



(x1, . . . ,xi, . . . ,xk) ∈ X1 ×·· ·×Xi ×·· ·×Xk :
⟨A1(y1, . . . ,xi, . . . ,xk)+S1(x1, . . . ,xi, . . . ,xk)− f1,y1 − x1⟩X∗

1 ×X1

+J◦1 (x1;y1 − x1)+φ1(y1)−φ1(x1)≥−ρ∥y1 − x1∥X1 , ∀ y1 ∈ X1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
⟨Ai(x1, . . . ,yi, . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi,yi − xi⟩X∗

i ×Xi

+J◦i (xi;yi − xi)+φi(yi)−φi(xi)≥−ρ∥yi − xi∥Xi , ∀ yi ∈ Xi,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
⟨Ak(x1, . . . ,xi, . . . ,yk)+Sk(x1, . . . ,xi, . . . ,xk)− fk,yk − xk⟩X∗

k ×Xk

+J◦k (xk;yk − xk)+φk(yk)−φk(xk)≥−ρ∥yk − xk∥Xk , ∀ yk ∈ Xk.

Motivated by Remark 2.4 of [1], we have the following results.

Theorem 2. If SMHVI is strongly well-posed in generalized sense and admits a
unique solution then SMHVI is strongly well-posed.

Proof. Let xn = (xn
1, . . . ,x

n
i , ., .,x

n
k) ∈ X1 ×·· ·×Xi ×·· ·×Xk be an approximating

sequence for SMHVI. Accordingly, there exists {ρn} ⊂R+ with {ρn}→ 0 as n → ∞

and xn ∈ ϒ(ρn) ∀ n ∈ N. Since SMHVI is strongly well-posed in generalized sense
and has a unique solution x = (x1, . . . ,xi, . . . ,xk), then {xn} has a subsequence {xnl},
which converges strongly to x. It suffices to prove that {xn} converges strongly to x.
Arguing by contradiction, let xn ̸→ x which leads to ∥xn − x∥ ̸→ 0 as n → ∞. Thus
there exists η > 0 and a subsequence {xml} of {xn} s.t.

∥xml − x∥ ≥ η. (3.2)

Now, it is simple to see that {xml} is an approximating sequence for SMHVI. Since
SMHVI is strongly well-posed in generalized sense and also has a unique solution x,
therefore, there exists a subsequence {xmlq} of {xml} s.t. xmlq → x as q → ∞, i.e.,

∥xmlq − x∥< η

2
.

Letting mlq = ml′ , we obtain

∥xml′ − x∥< η

2
,

which contradicts (3.2). This confirms that xn → x. □

Let Ai : X1 × ·· · ×Xi × ·· · ×Xk → X∗
i . We say Ai is norm to weak∗-sequentially

continuous iff xn = (xn
1, . . . ,x

n
i , . . . ,x

n
k)→ x= (x1, . . . ,xi, . . . ,xk) in X1×·· ·×Xi×·· ·×

Xk implies Ai(xn)
w∗
−→ Ai(x) in X∗

i . Further, we also need the following assumptions
throughout this paper. For each i ∈ {1, . . . ,k},
(Hm) Ai : X1 ×·· ·×Xi ×·· ·×Xk → X∗

i is monotone with respect to Xi,
(Ha) Ai : X1 ×·· ·×Xi ×·· ·×Xk → X∗

i is norm to weak∗-sequentially continuous,
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(H j) Ji : Xi → R is locally Lipschitz functional,
(Hφ) φi : Xi → R∪{∞} is proper, convex and l.s.c. map with effective domain:

dom(φi) = {xi ∈ Xi : φi(xi)< ∞} ̸=∅,
(Hc) Si : Xi ×·· ·×Xi ×·· ·×Xk → X∗

i is continuous on X1 ×·· ·×Xi ×·· ·×Xk,
(Hh) Ai : X1 ×·· ·×Xi ×·· ·×Xk → X∗

i is hemicontinuous with respect to Xi.

We end this section by addressing the following equivalence results between the sets
ϒ(ρ) and Ψ(ρ) for any ρ > 0.

Lemma 2. For each i ∈ {1, . . . ,k}, suppose that Ai : X1 ×·· ·×Xi ×·· ·×Xk → X∗
i

satisfies the hypothesis (Hm) and (Hh). Further assume that for each i∈{1, . . . ,k},φi :
Xi → R∪{∞} is a proper and convex functional, and Ji : Xi → R satisfies the hypo-
thesis (H j). Then ϒ(ρ) = Ψ(ρ) for any ρ > 0.

Proof. Let x = (x1, . . . ,xi, . . . ,xk) ∈ X1×·· ·×Xi×·· ·×Xk and x ∈ ϒ(ρ). Thus, for
each i ∈ {1, . . . ,k}, we have

⟨Ai(x1, . . . ,xi, . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi,yi − xi⟩X∗
i ×Xi + J◦i (xi;yi − xi)

+φi(yi)−φi(xi)≥−ρ∥yi − xi∥Xi , ∀ yi ∈ Xi. (3.3)

Since Ai is monotone with respect to Xi (by Hm). We have

⟨Ai(x1, . . . ,yi, . . . ,xk)−Ai(x1, . . . ,xi, . . . ,xk),yi − xi⟩X∗
i ×Xi ≥ 0, ∀ yi,xi ∈ Xi,

i.e.,

⟨Ai(x1, . . . ,yi, . . . ,xk),yi − xi⟩X∗
i ×Xi

≥ ⟨Ai(x1, . . . ,xi, . . . ,xk),yi − xi⟩X∗
i ×Xi , ∀ xi,yi ∈ Xi. (3.4)

By combining (3.3) and (3.4), we get

⟨Ai(x1, . . . ,yi, . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi,yi − xi⟩X∗
i ×Xi + J◦i (xi;yi − xi)

+φi(yi)−φi(xi)≥−ρ∥yi − xi∥Xi , ∀ yi ∈ Xi.

i.e., x = (x1, . . . ,xi, . . . ,xk) ∈ Ψ(ρ), so, ϒ(ρ)⊂ Ψ(ρ).
Conversely, let x = (x1, . . . ,xi, . . . ,xk) ∈ X1 ×·· ·×Xi ×·· ·×Xk and x ∈ Ψ(ρ) for

any ρ > 0. So, we yield that for each i ∈ {1, . . . ,k}
⟨Ai(x1, . . . ,yi, . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi,yi − xi⟩X∗

i ×Xi + J◦i (xi;yi − xi)

+φi(yi)−φi(xi)≥−ρ∥yi − xi∥Xi , ∀ yi ∈ Xi. (3.5)

Now for any w = (w1, . . . ,wi, . . . ,wk) ∈ X1 ×·· ·×Xi ×·· ·×Xk and t ∈ (0,1), let

zi = xi + t(wi − xi) = twi +(1− t)xi ∈ Xi, i ∈ {1, . . . ,k}.
Inserting zi in (3.5), we have that for each i ∈ {1, . . . ,k}

⟨Ai(x1, . . . ,xi + t(wi − xi), . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi, t(wi − xi)⟩X∗
i ×Xi

+ J◦i (xi; t(wi − xi))+φi(xi + t(wi − xi))−φi(xi)≥−ρt∥wi − xi∥Xi .
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By the convexity of φi and Lemma 1, we estimate that for each i ∈ {1, . . . ,k}

⟨Ai(x1, . . . ,xi + t(wi − xi), . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi,wi − xi⟩X∗
i ×Xi

+ J◦i (xi;wi − xi)+φi(wi)−φi(xi)≥−ρ∥wi − xi∥Xi . (3.6)

From (Hh), Ai is hemicontinuous with respect to Xi for each i ∈ {1, . . . .,k}. Taking
the limit as t → 0 in (3.6), we achieve

⟨Ai(x1, . . . ,xi, . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi,wi − xi⟩X∗
i ×Xi

+ J◦i (xi;wi − xi)+φi(wi)−φi(xi)≥−ρ∥wi − xi∥Xi , ∀ wi ∈ Xi.

Hence, the arbitrariness of w implies that x ∈ ϒ(ρ). Thus, Ψ(ρ)⊂ ϒ(ρ) ∀ ρ > 0. □

Remark 2. Lemma 2 improves and generalizes Lemma 3.1 in [22] and Lemma 3.1
in [23].

4. MAIN RESULTS

This section presents the metric characterizations and deduces some criteria, under
which, SMHVI is strongly well-posed.

Proposition 1. For each i ∈ {1, ..,k}, let Xi be a real Banach space with dual
space X∗

i . Further, assume that for each i ∈ {1, . . . ,k}, Ai : X1×·· ·×Xi×·· ·×Xk →
X∗

i , Si : X1 × ·· · × Xi × ·· · × Xk → X∗
i , Ji : Xi → R and φi : Xi → R∪ {∞} satisfy

the hypothesis (Ha), (Hc), (H j) and (Hφ), respectively. Then, Ψ(ρ) is closed in
X1 ×·· ·×Xi ×·· ·×Xk for any ρ > 0.

Proof. Let xn = (xn
1, . . . ,x

n
i , . . . ,x

n
k)∈ Ψ(ρ) be a sequence s.t. (xn

1, . . . ,x
n
i , . . . ,x

n
k)→

x = (x1, . . . ,xi, . . . ,xk). Then for each i ∈ {1, . . . ,k},

⟨Ai(xn
1, . . . ,yi, . . . ,xn

k)+Si(xn
1, . . . ,x

n
i , . . . ,x

n
k)− fi,yi − xn

i ⟩X∗
i ×Xi + J◦i (x

n
i ;yi − xn

i )

+φi(yi)−φi(xn
i )≥−ρ∥yi − xn

i ∥Xi , ∀ yi ∈ Xi. (4.1)

Since Ai,Si,Ji, and φi, satisfy (Ha),(Hc),(H j) and (Hφ), respectively. Thus, for each
i ∈ {1, . . . ,k}, by using (Ha) and Theorem 1, we obtain that

⟨Ai(xn
1, . . . ,yi, . . . ,xn

k),yi − xn
i ⟩X∗

i ×Xi → ⟨Ai(x1, . . . ,yi, . . . ,xk),yi − xi⟩X∗
i ×Xi . (4.2)

Also, taking the upper limit as n → ∞ in (4.1), it follows from (Hc),(H j),(Hφ) and
(4.2) that for each i ∈ {1,2 . . . ,k}

⟨Ai(x1, . . . ,yi, . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi,yi − xi⟩X∗
i ×Xi + J◦i (xi;yi − xi)

+φi(yi)−φi(xi)≥−ρ∥yi − xi∥Xi , ∀ yi ∈ Xi,

which confirms that x = (x1, . . . ,xi, . . . ,xk) ∈ Ψ(ρ). Therefore, Ψ(ρ) is closed. □

The following result can be obtained by applying Lemma 2 and Proposition 1.
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Corollary 1. For each i∈ {1, ..,k}, let Xi be real Banach space with dual space X∗
i

and assume that Ai : X1 ×·· ·×Xi ×·· ·×Xk → X∗
i satisfies the hypothesis (Ha),(Hh)

and (Hm). Further, suppose that for each i ∈ {1, . . . ,k},Si : X1×·· ·×Xi×·· ·×Xk →
X∗

i ,Ji : Xi → R and φi : Xi → R∪ {∞} satisfy the hypothesis (Hc), (H j) and (Hφ),
respectively. Then ϒ(ρ) is closed for any ρ > 0.

We now present the main results concerning to the strongly well-posedness of
SMHVI.

Theorem 3. For each i ∈ {1, ..,k}, let Xi be a real Banach space with dual space
X∗

i and assume that Ai : X1 ×·· ·×Xi ×·· ·×Xk → X∗
i satisfies the hypothesis (Ha),

(Hm) and (Hh). Further, suppose that for each i ∈ {1, . . . ,k},Si : X1 ×·· ·×Xi ×·· ·×
Xk → X∗

i ,Ji : Xi → R and φi : Xi → R∪ {∞} satisfy the hypothesis (Hc), (H j) and
(Hφ), respectively. Then SMHVI is strongly well-posedness iff

ϒ(ρ) ̸=∅ ∀ ρ > 0 and diam(ϒ(ρ))→ 0 as ρ → 0.

Proof. Let SMHVI be strongly well-posed. Then SMHVI has a unique solution,
say, x = (x1, . . . ,xi, . . . ,xk) and hence x ∈ ϒ(ρ) ∀ ρ > 0, which relates to Q ̸= ∅ and
ϒ(ρ) ̸=∅ ∀ ρ > 0. Also, suppose that diam(ϒ(ρ)) ̸→ 0 as ρ → 0. Thus, there exists
η > 0 and a sequence {ρn} ⊂ R+ with ρn → 0 as n → ∞ s.t. for each n ∈ N, there
exists wn = (wn

1, . . . ,w
n
i , . . . ,w

n
k) and zn = (zn

1, . . . ,z
n
i , . . . ,z

n
k) with wn,zn ∈ ϒ(ρn) s.t.

∥wn − zn∥> η. (4.3)

On the other hand, since wn,zn ∈ϒ(ρn), we have that the sequences {wn} and {zn} are
both approximating sequences for SMHVI. Further, SMHVI is strongly well-posed,
so the sequence {wn} and {zn} converges strongly to x ∈ Q, which contradicts (4.3).

In order to prove the sufficiency, let xn = (xn
1, . . . ,x

n
i , . . . ,x

n
k) be an approximating

sequence for SMHVI. Thus, there exists a sequence {ρn} ⊂ R+ with ρn → 0 s.t.
(3.1) holds, i.e., xn ∈ ϒ(ρn). Since diam(ϒ(ρn)) → 0 as ρn → 0, it is easy to draw
that {xn} is a Cauchy sequence in X1×·· ·×Xi×·· ·×Xk. Since X1×·· ·×Xi×·· ·×Xk
is complete, and so {xn} converges strongly to some point x = (x1, . . . ,xi, . . . ,xk) ∈
X1 ×·· ·×Xi ×·· ·×Xk. Using the hypothesis (Ha), (H j), (Hc), (Hφ) and Lemma 1,
it follows that for each i ∈ {1, . . . ,k},

⟨Ai(x1, . . . ,yi, . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi,yi − xi⟩X∗
i ×Xi + J◦i (xi;yi − xi)

+φi(yi)−φi(xi),

≥ limsup
n→∞

[
⟨Ai(xn

1, . . . ,yi, . . . ,xn
k)+Si(xn

1, . . . ,x
n
i , . . . ,x

n
k)− fi,yi − xn

i ⟩X∗
i ×Xi+

J◦i (x
n
i ;yi − xn

i )+φi(yi)−φi(xn
i )

]
,
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≥ limsup
n→∞

[
⟨Ai(xn

1, . . . ,x
n
i , . . . ,x

n
k)+Si(xn

1, . . . ,x
n
i , . . . ,x

n
k)− fi,yi − xn

i ⟩X∗
i ×Xi+

J◦i (x
n
i ;yi − xn

i )+φi(yi)−φi(xn
i )

]
, [by (Hm)]

≥ limsup
n→∞

[
−ρn∥yi − xn

i ∥Xi

]
, [by (3.1)],

= 0, ∀ yi ∈ Xi.

Now, due to the convexity of φi,(Hh) and Lemma 1, we can derive (by invoking the
analogous proof outline of Lemma 2) that

⟨Ai(x1, . . . ,xi, . . . ,xk)+Si(x1, . . . ,xi, . . . ,xk)− fi,yi − xi⟩X∗
i ×Xi + J◦i (xi;yi − xi)

+φi(yi)−φi(xi)≥ 0, for each i ∈ {1, . . . ,k},

which means that x ∈ Q. For the completeness of the proof, let us assume by contra-
diction that the SMHVI has two distinct solutions, say, x,z∈Q. Since Q⊂ϒ(ρ) ∀ ρ>
0, so as x,z ∈ ϒ(ρ) ∀ ρ > 0. Also, since diam(ϒ(ρ))→ 0 as ρ → 0, it is straightfor-
ward to deduce that

∥x− z∥ ≤ diam(ϒ(ρ))→ 0,

which contradicts x ̸= z, and this confirms the uniqueness of the solution. □

Theorem 4. For each i ∈ {1, ..,k}, let Xi be a real Banach space with dual space
X∗

i and assume that Ai : X1 ×·· ·×Xi ×·· ·×Xk → X∗
i satisfies the hypothesis (Ha),

(Hh) and (Hm). Further, suppose that for each i ∈ {1, . . . ,k},Si : X1 ×·· ·×Xi ×·· ·×
Xk → X∗

i ,Ji : Xi → R and φi : Xi → R∪ {∞} satisfy the hypothesis (Hc), (H j) and
(Hφ), respectively. Then SMHVI is strongly well-posedness in generalized sense iff

ϒ(ρ) ̸=∅ ∀ ρ > 0 and µ(ϒ(ρ))→ 0 as ρ → 0. (4.4)

Proof. Assume that SMHVI is strongly well-posed in generalized sense. For any
ρ > 0, then Q ̸=∅ and Q ⊂ ϒ(ρ). Moreover, we claim that the set Q is compact. For
any sequence, say, xn ∈ X1×·· ·×Xi×·· ·×Xk s.t. xn ∈ Q and so xn ∈ ϒ(ρ) for all ρ >
0. For any ρ > 0, it follows from Q ⊂ ϒ(ρ) that {xn} is an approximating sequence
for SMHVI. Since the SMHVI is strongly well-posed in generalized sense, therefore
{xn} has a subsequence that converges to some point of the set Q, which indicates
that the set Q is compact and hence µ(Q) = 0. Now, we claim that µ(ϒ(ρ))→ 0. In
fact, for any ρ > 0,Q ⊂ ϒ(ρ) implies that

H (ϒ(ρ),Q) = max{e(ϒ(ρ),Q),e(Q,ϒ(ρ))}= e(ϒ(ρ),Q). (4.5)

Also, from the compactness of Q and (4.5), we obtain

µ(ϒ(ρ))≤ 2H (ϒ(ρ),Q)+µ(Q)≤ 2H (ϒ(ρ),Q) = 2e(ϒ(ρ),Q).
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Hence, to prove µ(ϒ(ρ))→ 0 as ρ → 0, it is enough to show that e(ϒ(ρ),Q)→ 0 as
ρ → 0. Arguing by contradiction, we assume that e(ϒ(ρ),Q) ̸→ 0 as ρ → 0. Thus,
there exists a constant ε > 0 and a sequence {ρn} ⊂ R+ with ρn → 0 as n → ∞ and
wn ∈ ϒ(ρn) satisfying

d(wn,Q)> ε, ∀ n ∈ N. (4.6)

Since {wn} is an approximating sequence for SMHVI and SMHVI is well-posed
in generalized sense, therefore, there exists a subsequence {wnl} of {wn}, which
converges to some point of Q. So we get

0 < ε < d(wnl ,Q)→ 0,

which contradicts (4.6).
Conversely, assume that (4.4) holds (ϒ(ρ) ̸= ∅). By Corollary 1, we have that

ϒ(ρ) is closed for all ρ > 0. Next, we claim that

Q =
⋂
ρ>0

ϒ(ρ).

It is evident that Q ⊂
⋂
ρ>0

ϒ(ρ). Conversely, let x = (x1, . . . ,xi, . . . ,xk) ∈
⋂
ρ>0

ϒ(ρ). So,

there exists ρn > 0 s.t. ρn → 0, which leads to x = (x1, . . . ,xi, . . . ,xk) ∈ ϒ(ρn). Thus
for each i ∈ {1, . . . ,k}, we get

⟨Ai(x)+Si(x)− fi,yi − xi⟩X∗
i ×Xi + J◦i (xi;yi − xi)+φi(yi)−φi(xi)

≥−ρn∥yi − xi∥Xi , ∀ yi ∈ Xi. (4.7)

Letting n → ∞ in (4.7), we get

⟨Ai(x)+Si(x)− fi,yi − xi⟩X∗
i ×Xi + J◦i (xi;yi − xi)+φi(yi)−φi(xi)≥ 0, ∀ yi ∈ Xi.

For any z = (z1, . . . ,zi, . . . ,zk) ∈ X1 × ·· ·×Xi × ·· ·×Xk and t ∈ (0,1), let yi = xi +
t(zi − xi) ∈ Xi, i ∈ {1, . . . ,k}. Now using the convexity of φi and Lemma 1, it is easy
to draw that x ∈ Q and hence

⋂
ρ>0

ϒ(ρ)⊂ Q. This shows that Q =
⋂
ρ>0

ϒ(ρ). Since

µ(ϒ(ρ))→ 0 as ρ → 0. By generalized Cantor theorem (see [12]), it follows that Q
is nonempty and compact with ϒ(ρ)→ Q as ρ → 0 w.r.t. H , i.e.,

H (ϒ(ρ),Q)→ 0 as ρ → 0. (4.8)

As,

e(ϒ(ρ),Q) = H (ϒ(ρ),Q), for ρ > 0.

Hence, from (4.8), we get

e(ϒ(ρ),Q)→ 0 as ρ → 0. (4.9)
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In order to complete the proof, let xn = (xn
1, . . . ,x

n
i , . . . ,x

n
k) ∈ X1 ×·· ·×Xi ×·· ·×Xk

be an approximating sequence for SMHVI, thus there exists {ρn} ⊂R+ with ρn → 0
s.t. for each i ∈ {1, . . . ,k}, we have

⟨Ai(xn)+Si(xn)− fi,yi − xn
i ⟩X∗

i ×Xi + J◦i (x
n
i ;yi − xn

i )+φi(yi)−φi(xn
i )

≥−ρn∥yi − xn
i ∥Xi , ∀ yi ∈ Xi,

i.e., xn ∈ ϒ(ρn). It ensures from (4.9) that

d(xn,Q)≤ e(ϒ(ρn),Q)→ 0.

As the solution set Q is compact, so there exists wn = (wn
1, . . . ,w

n
i , . . . ,w

n
k) ∈ Q s.t.

∥xn −wn∥= d(xn,Q)→ 0. (4.10)

Also, from the compactness of Q, the sequence {wn} has a subsequence {wnl} s.t.
wnl → w

′
, (for some w

′ ∈ Q). Hence, it follows from (4.10) that

∥xnl −w
′∥ ≤ ∥xnl −wnl∥+∥wnl −w

′∥→ 0,

which estimates xnl → w
′
. This derives the strongly well-posedness of the SMHVI.

□

The next theorem is arranged by setting Xi = R for each i ∈ {1, . . . ,k}. Hence
X1×·· ·×Xi×·· ·×Xk =Rk. Here, we present some conditions by which the SMHVI
is well-posed in generalized sense.

Theorem 5. For each i ∈ {1, . . . ,k}, let Ai : Rk →R be a continuous mapping sat-
isfying the hypothesis (Hh) and (Hm). Further, assume that for each i ∈ {1, . . . ,k},Si :
Rk →R,Ji : R→R and φi : R→R∪{∞} satisfy the hypothesis (Hc), (H j) and (Hφ),
respectively. If there exist n0 ∈ N and ρ > 0 s.t. ϒ(ρ) is nonempty, bounded and for
every approximating sequence {xn} of SMHVI xn ∈ ϒ(ρ) ∀ n > n0. Then SMHVI is
strongly well-posedness in generalized sense.

Proof. Let xn = (xn
1, . . . ,x

n
i , . . . ,x

n
k) ∈ Rk be an approximating sequence of the

SMHVI. Then there exists {ρn} ⊂ R+ s.t. ρn → 0 as n → ∞. Thus for each i ∈
{1, . . . ,k},

⟨Ai(xn)+Si(xn)− fi,yi − xn
i ⟩+ J◦i (x

n
i ;yi − xn

i )+φi(yi)−φi(xn
i )

≥−ρn∥yi − xn
i ∥R, ∀ yi ∈ R, (4.11)

On the other hand, let ρ > 0 be s.t. ϒ(ρ) is nonempty and bounded. Accordingly,
there exists n0 ∈ N s.t. xn ∈ ϒ(ρ) ∀ n > n0. This formulates that {xn} is bounded.
Thus, there exists a subsequence {xnl} of {xn} s.t. xnl = (xnl

1 , . . . ,x
nl
i , . . . ,x

nl
k )→ x̂ =

(x̂1, . . . , x̂i, . . . , x̂k). Further, due to the hypothesis (Hc),(Hm),(H j) and the lower semi-
continuity of φi along with Lemma 1, we have the following estimates

⟨Ai(x̂1, . . . ,yi, . . . , x̂k)+Si(x̂1, . . . , x̂i, . . . , x̂k)− fi,yi − x̂i⟩
+ J◦i (x̂i;yi − x̂i)+φi(yi)−φi(x̂i),
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≥ limsup
l→∞

[
⟨Ai(x

nl
1 , . . . ,yi, . . . ,x

nl
k )+Si(x

nl
1 , . . . ,x

nl
i , . . . ,x

nl
k )− fi,yi − xnl

i ⟩

+ J◦i (x
nl
i ;yi − xnl

i )+φi(yi)−φi(x
nl
i )

]
,

≥ limsup
l→∞

[
⟨Ai(x

nl
1 , . . . ,x

nl
i , . . . ,x

nl
k )+Si(x

nl
1 , . . . ,x

nl
i , . . . ,x

nl
k )− fi,yi − xnl

i ⟩

+ J◦i (x
nl
i ;yi − xnl

i )+φi(yi)−φi(x
nl
i )

]
,

≥ limsup
l→∞

[−ρn∥yi − xnl
i ∥R], [by (4.11)],

= 0.

By following the arguments similar to Lemma 2, we can deduce (by hemicontinuity
of Ai and the convexity of φi) that

⟨Ai(x̂1, . . . , x̂i, . . . , x̂k)+Si(x̂1, . . . , x̂i, . . . , x̂k)− fi,yi − x̂i⟩
+ J◦i (x̂i;yi − x̂i)+φi(yi)−φi(x̂i)≥ 0,

which means that (x̂1, . . . , x̂i, . . . , x̂k) ∈ Q. Thus, the SMHVI is strongly well-posed in
generalized sense. □

Remark 3. Proposition 1 generalizes Lemma 3.2 of [22] and Lemma 3.2 of [23].
Further, Theorem 3 and Theorem 4 generalize Theorem 3.1 of [22] and Theorem 3.2
of [22], respectively. Also, if k = 1 with S1 = θ1 and φ1 = 0 then Theorem 3 and
Theorem 4 reduce to Theorem 3.1 of [23] and Theorem 3.2 of [23], respectively.
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