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NEWTON-TYPE INEQUALITIES ASSOCIATED WITH CONVEX
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Abstract. In this paper, we firstly establish an identity by using the notions of quantum deriv-
atives and integrals. Using this quantum identity, quantum Newton-type inequalities associated
with convex functions are proved. We also show that the newly established inequalities can be
recaptured into some existing inequalities by taking ¢ — 17. Finally, we give mathematical
examples of convex functions to verify the newly established inequalities.
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1. INTRODUCTION

A function f: [a,b] — R is convex if it satisfies an inequality:

flx+(1—=t)y) <tf(x)+(1=1)f(),

where x,y € [a,b] and ¢ € [0,1].

The most famous inequalities related to the integral inequalities for convex func-
tions are Simpson- and Newton-type inequalities. Simpson’s rules, famous tech-
niques for numerical integration and approximations of definite integrals, were dis-
covered by Thomas Simpson (1710-1761). These techniques are also known as
Kepler’s rule because Johannes Kepler used a similar estimation about 100 years ago.
Simpson’s rule consists of three-point Newton-Cotes quadrature rule, so estimations
based on three steps quadratic kernel are sometimes called Newton-type inequalities.

(1) Simpson’s quadrature formula (Simpson’s 1/3 rule) is as follows:

[ x| @ ar (450) 400
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see [0] for more details.
(2) Newton-Cotes quadrature formula or Simpson’s second formula
(Simpson’s 3/8 rule) is as follows:

[ s st ar (252 ) w31 (457 10

see [15] for more details.

The estimations of Simpson- and Newton-type inequalities are as follows:

Theorem 1 ([0]). Suppose that f: [a,b] — R is a four times continuously differ-
entiable function on (a,b) and Hf(4) .= SUP ¢ (a,h) |f @) (x)| < oo, then

! [f(a)+4f<a;b> +f<b>] o [

Theorem 2 ([15]). Suppose that f: [a,b] — R is a four times continuously differ-
entiable function on (a,b) and Hf(4) .= SUP ¢ (a,h) |f @) (x)] < oo, then

‘; [f(a)+3f<2a;b> +3f<az2b> +f(b)] - bia/abf(x)dx

<z |-

1
< <4>H —a)*.
—6480Hf J(b—a)

Currently, many researchers have focused on the Newton-type inequalities, see
[4,9-12,16-18] and the references cited therein. Particularly, some researchers have
studied on the Newton-type inequalities by using quantum calculus.

Quantum calculus, also known as g-calculus, gains g-analoques of mathematical
objects which can be recaptured by letting ¢ — 1. The g-calculus has wide applic-
ations in various fields of physics and mathematics such as relativity theory, mech-
anics, quantum theory, orthogonal polynomials, number theory, and hypergeometric
functions [8, 14]. In the beginning study of the g-calculus, the concept was revealed
by renowned mathematician Euler (1707-1783), who introduced the g-parameter
in Newton’s infinite series. In 1910, Jackson [13] studied the concept of Euler to
define g-integral and g-derivative of continuous functions over the interval (0,e0),
also known as calculus without limits. In 1966, Al-Salam [1] studied the concepts
of g-fractional integral inequalities and g-Riemann-Liouville fractional integral in-
equalities. In particular, in 2013, Tariboon and Ntouyas [20] presented the g-integral
and the g-derivative of continuous functions over finite intervals. Some new results
of g-calculus in Newton-type inequalities can be found in [2,3,5,7,19,21,22] and the
references cited therein.

Inspired by the ongoing studies, we propose to prove new versions of quantum
Newton-type inequalities associated with convex functions. We also prove that the
newly established inequalities are the generalization of the existing Newton-type in-
equalities.
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2. PRELIMINARIES

The definitions and fundamental concepts of g-calculus are presented in this sec-
tion. Throughout this paper, let g be a constant with 0 < g < 1 and [a,b] C R be an
interval with a < b. The g-number of n is given by

1 . ()
[n]q = 1—qq =1+g+qg++¢"", neN

Definition 1 ([20]). For a continuous function f: [a,b] — R, the g-derivative on
[a,b] is defined as:

_ 1—
[ —f@t (g0 o,
Def(x) =4  (1=g)lx—a) ' 2.1)
glc% aDgf(x), if x=a.
The function f is called a g,-differentiable function if ,D, f(x) exists.

In Definition 1, if @ = 0, then (2.1) is recaptured as follows:

) f(gw)
Daf ) =1

which is the g-Jackson derivative, see [13] for more details.

Definition 2 ([20]). For a continuous function f: [a,b] — R, the g,-integral on
[a,D] is defined as:

[ 10 i = -gc-a) L&' Flg e (1-gYa) @)
a n=0

for x € [a,b]. The function f is called a g,-integrable function if [ f(r) dyt for all
X € [a,b] exists.

In Definition 2, if @ = 0, then (2.2) is recaptured as follows:
X oo
| @ d = -aix ¥ " (@), 2.3)
n=0

which is the g-Jackson integral, see [13] for more details. Moreover, Jackson [13]
gave the g-Jackson integral on the interval [a, b] as follows:

/abf(t) dqtz/obf(t) dqt—/oaf(t) dyt.

Lemma 1 ([19]). For continuous functions f, g — R, the following expression
holds:
(&
| #(0) uDys e+ (1= 1)a) dyt =

c

8(1)f(tb+ (1 -1)a)

0

b—a
1 c
N b_a/o Dqg(t)f<qtb+(1 —q[)a) dqt. (24)
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Lemma 2 ([21]). The following expression holds:

b o _(b_a)ochl
/d(x—a) aqu—W,

where o, € R—{—1}.

3. MAIN RESULTS

In this section, we will derive Newton-type inequalities for convex functions by
using the g-derivative and g-integral. The following lemma is required to obtain the
main results.

Lemma 3. Suppose that f: [a,b] — R is a g,-differentiable function on (a,b)
such that ,D,f is continuous and integrable on [a,b]. Then, we have the following
identity:

;[f<a>+3f<2“3+b) a7 (“52) +10)

a+2b

[ / e it / F) 2ndgr+ / Flx M,dqx]
:bga[/o (qt 3) qf<2a+b (1—t)a> »

/01<qt_1> qf<a+2b (l_t)2a3+b> »
/01 <qz—§> D,f (;b+(1—t)a+32b> dqz]. 3.1

Proof. Let

+

_|_

9 { <qt—> qf<2a+b (1—t)a> dgt

+ 01< > (C“;Z[’Jr(l—t)z“;b) dyt
+ 01 (qt ) D,f <tb+(1—t)aJ;2b> dqt]
(b— a)

I +5L+1). (3.2)

Using Lemma 1, we have

/Ol<qt 3) qf(2a+b+(l—t)a> dgt
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(0

1

—da 0
3 2a+b
1_
- a/qf(qt 3 +( qt))é“
3 3 2a+b +
—a\? 8 3
3 ooqn+l (qn+12‘l+b (1— qn+1)a)
b a nO
3 3 ; 2a+b -
“br—al\l7 3 3
3 = 2a+b .
- (1-9)) q f(q (161)a>
n=1

“b-a (qz)f<2a3+b)+s?f(_al>
o >lgq" (¢22 =) - (2552)

1—¢ f
_ 9f(a) 15 2a+b
B +g(zo—a)f< 3

9 o
) — (b—a)Z/a f(x) adyx. (3.3)

Similarly, we obtain

1 1 +2b 2a+b
/0 <qt_2> qf( = +(1-1) a3 ) dyt

3 2a+b 3 a+2b 9 at2b
N 2(b _a)f< 3 ) + Z(b—d)f < 3 ) (b a) /2a+b f(x) %dqx’
3.4)

and

! 5 +2b
/0 (qt—g) aqu<tb+(1—t)a 3 )dqt

15 a+2b 9 9 b
_S(b—a)f< 3 >+8(b—a)f(b)_(b_a)2/c,§2,,f(x)agadqx- (3.5)

Substituting the inequalities (3.3) - (3.5) in inequality (3.2), we get the required in-
equality (3.1). Hence, the proof is accomplished. ([l
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Theorem 3. Under the conditions of Lemma 3, if |,Dyf| is a convex function on
[a,b], then we have the following inequality:

‘; [f(a) +3f (2“3”) +3f (”32”) +f(b)]

2a+b

a+2b

1 3 3 b
5 [ [ gt [ 1) gpdgrt [ ) ]
b—a

5 [(A1(@) +A3(9) +As(q)) | aDof ()]
+(A2(q) + As(q) + Ae(9) | Dy f(B)]], (3.6)
where Ai(q),i =1,2,...,6 are defined by

<

6-9—¢*—15¢° 3.
Avlg) =4 2T, 0<g<g

19 480° +248¢%+248¢—3 3~
82,0, 0 85

3—5¢—5¢* 3.
1220[2]24[31]30’ 69 Ocas
g~ +160g— 3
TSR B, 0 8 =9<

Aa(q) = {

Itgtq’ 24 L.
A3(q){436$;q[23}"2 71 (3<q< 2

q°+2q"+2q+ 1
g, 0 2S4<h
2-9—¢—¢’ L.
Adlg) =4 o, o 0<a<a
WD = 28 tdgtag1 1 o
2RE, 0 2595
5q+5¢*=3¢> 0

_ ) 2423, >

As(9) = 1 964 404" 16044275 5
768[2], 3] 8
154¢+4’ 64’ 0
Aelq) =4 2P, X
8

1924 4+3684> 43689445
768[2]4[3]4 ’

Proof. By taking modulus in Lemma 3, we have

2a+b 2b 1
@3 (350 e () e -
gb;a[/ol aqu<t20;_b+(l—t)a>‘dqt

+/01 quf(taJ;%Jr(l—t)zaer)‘ dgt

0| =—

3
L

.
=5

3
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qf(tb+(1—t)“+32b>‘ dqt]

b— 31 /3—
< 9[/0 qr—g\( oDt @]+ 51 Dur®)])

1 11 /2~
+/0 qt—2’<3t\a0qf(a)| —— | aDyf( )’> d!

1 5//1— 2
w3 (S apural + *’\ D0 ) dt]

Using Lemma 2, it can easily compute the integrals as follows:

1+t

1 _ 6-q-q°— 154 3.
Ai(g) = / qt — o] dgt = 48343[2]3%12 ;48 3 2 S
24862 +2489 2
0 81 3 e, s s4a<l,
| 3-5¢—5¢” 3.
Az(q)z/ qt—é Edqt: 1264()[2]2q[31]g(), . 0<g<ys
q”+160g— 3
0 83 —en,p, @ s=4<L
14+g+4>—24> 1.
1 112 —+1 TeRL1BL. 0<g< 5
As(q) = / Gt = 5| 3 dgt = 4 -[i-;q[3-]g2q+l 1 <q i
° T, 0 259<h
2-4—¢*—¢* 1.
1 1| 1+¢ S2LEL 0<g< 75
A4(q) :/o at— 5|3 4 = 203 +4g +4g—1 1
2B, 2= ’
1 _ 5q+54° 34> 5.
As(q) = / qt — % % dgt = 962;@353,1760%275 (5) S
0 e, 0 s=4<L
1 15+9+4’~6¢° 5.
nslq) = [ lgr=2| 2 g = 2P O<gq=<y
614 0 T—gl 3 % 1924° +3684%+368¢+45 5 < 1
768[2]4(3]4 ’ 8 — )
Hence, the proof is accomplished. 0

Remark 1. If we take the limit ¢ — 1~ in Theorem 3, then inequality (3.6) becomes

‘; [f(a)+3f (26’;[7) 3f (“Hb) +f(b)] - (bia) /abf(x)dx

< BP0 @)+ 1)),

which is proven in [12].
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Theorem 4. Under the conditions of Lemma 3 and r > 1, if |,Dyf|" is a convex
function on [a,b], then we have the following inequality:

Hf() 3f<2a—|—b) 3f(a+2b>+f(b)]

2ath as2b
[ / f(x) adgx+ / flx 20t dgx + / flx a+2bdqx]

(A7(@)" 7 (M1 (@)]aDgf (@)]" +Ax(q)]aDyf (b)\’)%

ba[

~ =

+<A9<q>>‘*%< AS@IaDof @)+ Aslg) D B))?] . 6
where Ai(q),i = 1,2,...,6 are given in Theorem 3, and A;(q),i =7,8,9 are defined

by
o= [o-alae={F) 125
A9(61):/01 qt—g dqt:{%zg%j giii%

Proof. By taking modulus in Lemma 3, applying the power mean inequality, and
using the convexity of |,D,f|", we have

1 2a+b a—+2b
lg[f(a)+3f< - ) 3f( >+f } b_ /f
Sb;a[/ol . 3 qf<2a+b (1—t)a>‘dqt

1 1 +2b 2a+b
+/0 qf<a +(1-1) a3 >‘dqt

1 2b
+/O qt—g aqu<tb+(1—t)a—; >‘dqt:|

-7

qt—é‘dﬁ)

Sb_a [</01
3 qf( 2a—|—b+(l_t)a>

qt —

qt —

(f ) 1]
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5

l‘_f
E

(4

1 =7
qt— 2‘ dqf)

ot (2002 )|
qt—g‘ dqt)l_i
aDqf <tb—|—(1 —t)a+2b> r a’qt> l]
qt—z‘ dqt>1_i

r

(3; | «Dyf(a)|"+ %] aqu(b)|’> dqr) 1]
qt—;‘ 0lqt>1l
<23_t’aqu(a)}r—|—13—+_t|aqu(b)‘r> dqt>r

5 =
qt—g‘ dqt>

|—
| S

24t

<13_’ | aDgf (@) + =3~ | aDyf (b) \’) dqt> 1 :

Using Lemma 2, the integrals can be easily computed as follows:

1 3—-5¢ 3.
:/ gt —— dqt:{%f]]i; (3)<q<8’
0 8 o, s ~4<l

1 1=q 1.

:/ qt—l dqt:{2[2]q’ (l)<q<2’

q

0 2 m) §§q<la
1 5-3¢ 5.
A TR
0 8 202, §§q<1

Thus, the proof is accomplished.

391
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Remark 2. If we take the limit ¢ — 1~ in Theorem 4, then inequality (3.7) becomes

‘;[f() 3f< ) 3f<a+2b)+f(b)]_bla/abf(x)dx

<boa { (17>”/ ’ (251 lf’<a>|’+937|f'<b>|’> " <|f’(a)|’+ \f’(b)|’> v

— 36 16 1152 2

17\ V" 19371 £ (a)" + 251 |/ (b)) \ "
+<16> ( 1152 ) ’

which is proven in [18].

Theorem 5. Under the conditions of Lemma 3 and r > 1 with s +r=1 =1, if
laDgf|" is a convex function on |a,b], then we have the following inequality:

‘; {f( )+ 3f<2a+b> 3f<a+2b> +f(b)]

a+2h

[/zﬁ Fx) adgx+ / F(0) mpadyr+ / flx Mbdqx]

b—a (3g+2)| aDgf(a)| +]| aDaf (D)|" G
9 8 32],

<

1

. ((2q+1 | aDgf(a)|" +(q+2) | aDyf (b)|" )

1
2 312,

42 (g\ Dyf(a@)| + (2q+3) | uDyf (b)|" ) a8)

3(2)4

Proof. By taking modulus in Lemma 3, applying the Holder’s inequality, and
using the convexity of |,D,f|", we have

‘é[f() 3f<2“+b) 3f<“+2b> —i—f(b)]—(bia)/abf(x)udqx
Sb;a [/01 ,,f( 2a+b+<1_l)a>

1 2b 2a+b
+/ Df(ta—g—i-(l—t)a;_)‘dqt
0

+/01 aDgf (Zb—l—(l _t)a+32b)' dqt]

qr — dyt

l’_f
=3

qr —
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gt —3

me——
| dqf)i </°1 qf( 5 (1—t)2a3+b> r dqt>£]
5 S)i </0l aqu<tb+(1t)a-;2b> r dqt):”
gb;“ [(/01 qt_zsdq;>i</ol< o +

([ 2 )

(/o1 ql—?;‘s dq,t>l </o1 <13_t‘aqu(a)‘r 2—|—t‘ Duf b ) dqt) ,4

By using inequality (2.3), we have

/

1 s
_l’_

+

=
| IS
—_

N

N o

—% <(l-9) ) ¢

n=0

p3 '
E

- n n 3
—-9) Y. q" 4" -3
n=0

5 1 5%
( Q) 8s (1 _q) 8s

So, we find that
qt—5

(L ) 1 G
ba{m CEEEEY >)]
9 8s 3[2],

Similarly, we obtain

b IR T 2- " ;
9“[(/0 a3 de) ([ (51 eoar@l+ 5 aus >\)dqr)]
_b—a (1) 29+ 1) | Dyf (@) + (g+2) | Dgf ()|

9 2s 3[2], ’

aDqf ()

)]
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- S dc,t>i </o1 (13t|aqu(a>\r+23+t}”qu(b)‘r> dqtﬂ

_b-a (33‘)1(q\aqu(a>!’+(2q+3>\al%f(b)!r)l
8 3[2]4

Thus, the proof is accomplished. U

4. EXAMPLES

In this section, we give examples to support the main results.

Example 1. Let f: [1,5] — R be defined by f(x) = x*>. From Theorem 3 with
q= %, the left-hand side of inequality (3.6) becomes

‘; [f(a) 13y (2“3“’) Y (“2”’) +f(b)]
1 2a+b a+2b

5 3 b
_(b—a) /a fx) adq)H_/M f(x) 2atb qX—i-/ﬂf(x)% qx]
1 7 11
~ g [rar (5) var (5 ) +16)]
—% [/3x2 1d§x+/TX2 7d3x—|—/5x2 ud3x]
1 3 1 3 4 LA

~ 0.6206,

and the right-hand side of inequality (3.6) becomes

% [(A1(q) +As(q) +As(q)) | aDgf (@) + (A2(q) + Aa(q) + As(q)) | aDgf (B)|]

) on() o
(o)) or () o]

~ 1.6945.
It is clear that

0.6206 < 1.6945,
which shows that inequality (3.6) is valid.
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Example 2. Let f: [1,5] — R be defined by f(x) = x*>. From Theorem 4 with
q= %, the left-hand side of inequality (3.7) becomes

‘; {f(a) +3f (2“,;”) 3 (“*ﬁ) +f(b)]

2a+b a+2b

5 3 b
I et [ T sgpdt [, 7 s

b
(b—a) 2ath

_ 'é [f(1)+3f <;> +3f (131> +f(5)]

1] [3 5 5
—— [/ x? 1d;x+/ x? zdgx-l-/ x 1|d3x]
4 | )1 7 1 3 4 a 3 4

~ 0.6206,

and the right-hand side of inequality (3.7) becomes

25 (M) (A (@)laDof @ + As(a)|aD FO)

N =

(Aa(@)laDyf (@) + As(@)laDy f (b))
T (As(@)]Daf (@) + As(@)|aD S (b)) |

) (o (v (G) '1sz<5>|2>é

1

3
4
Dt (aa () hoas 0B s (3 ) 10392
) (oo (Jumro) |

+(Ag (
~ 3.3900.
It is clear that
0.6206 < 3.3900,

which shows that inequality (3.7) is valid.

Example 3. Let f: [1,5] — R be defined by f(x) = x*>. From Theorem 5 with
q= %, the left-hand side of inequality (3.8) becomes

‘; [f(a) +3f (2“;1’) 3 <a+32b> +f<b>]
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2a+b a+2b
1

- '; [f(l)“f <;) +3f (131) +f(5)]

1| /3 5 5
—— [/zx2 1d;x+/3 X2 zd;x—l—/ X udsx
4 1 3 % 34 171 3 4

~ 0.6206,

and the right-hand side of inequality (3.8) becomes

b—a 5((3Q+2)!al)qf(a)}r+\“qu(b)‘r>l
9 |8 3[2],

L CatD]aDyf(@] +(a+2) [ Lof B )1
2 3[2)q

3 <q\ Dof ()] +(24+3)| aqu<b>\’)"

3 32,

2
a5 (G2 ioyr)] +] 10y r65)]
9|8 3021,

2 2\ 2
G+ |+ G+2) [ 1036)
i) 30
3 2 3 2\ 2
3 (3] + (G+3)| 1D3£65)]
T3 321,
~ 4.0741.
It is clear that
0.6206 < 4.0741,

which shows that inequality (3.8) is valid.
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5. CONCLUSIONS

In this work, we proved new versions of quantum Newton-type inequalities as-
sociated with convex functions. We also demonstrated that the newly established
inequalities can be recaptured into classical Newton-type inequalities by taking the
limit ¢ — 17. Mathematical examples were given to verify the newly established
inequalities. In future works, researchers can obtain similar inequalities of Newton-
type inequalities associated with convex functions by using post quantum calculus.
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