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Abstract. The µ-neutral linear fractional multi-delayed differential nonhomogeneous system with
noncommutative coefficient matrices is introduced. The novel µ-neutral multi-delayed perturba-
tion of Mittag-Leffler type matrix function is proposed. Based on this, an explicit solution to the
system is investigated step by step. The existence uniqueness of solutions to µ-neutral nonlinear
fractional multi-delayed differential system is obtained with regard to the supremum norm. The
notion of stability analysis in the sense of solutions to the described system is discussed on the
grounds of the fixed point approach.
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1. INTRODUCTION AND PRELIMINARIES

Fractional Calculus which is seen as a generalisation of the ordinary calculus has
drawn many of researchers’ attention in recent years. And also it has been started to
be exponentially utilized in so many different kinds of areas like finance, engineering,
neurons, electric conductance, diffusion, thermodynamics, computed tomography,
mechanism, mathematical physics.

Fractional (ordinary) delay differential equations [9, 10, 12–14] are of a consider-
able importance since they permit to describe such systems that the rate of change
depends both on the present and delayed states and on the past state unlike other
systems. They are very often exploited in propagation of energy or information and
transport in interdependent systems (see e.g. [1, 6, 16] and reference therein). In ref-
erence [7], Khusainov and Shuklin were able to find a solution of the below linear
fractional delayed differential system in terms of producing the delayed exponential
matrix. {

w
′
(t) = Bw(t)+Fw(t − r) , t > 0 r > 0 (delay),

w(t) = φ(t) , −r ≤ t ≤ 0.
(1.1)
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The drawback of system (1.1) is to assume that the coefficient matrices B and F
must be commutative. In reference [10], Li and Wang consider the fractional ver-
sion of system (1.1) in the case of F = Θ. The drawback is also in progress because
of validation of commutativity of coefficient matrices when F = Θ. In reference
[12], Mahmudov investigates a general version of fractional delay differential system
whose coefficient matrices do not need to be either commutative or zero. Having pro-
posed a newly delay perturbation of Mittag-Leffler type matrix function, Mahmudov
gives an excellent representation of solutions of the mentioned system. In the se-
quel, Mahmudov extends the fractional delay differential equations in the work [12]
to multi-delayed version in the work [13] and solve it.

In the neutral version of the fractional(ordinary) delay differential equations [18],
[15], [5] the fractional(ordinary) derivative of the unknown function appears mostly
with delays and rarely without delays. These kinds of systems are used from popula-
tion growth to the motion of radiation electrons, spread of epidemic. In reference[15],
Pospisil and Skripkova investigate the following linear neutral fractional delay dif-
ferential equations{

w
′
(t)−Aw

′
(t − r) = Bw(t)+Fw(t − r)+ f (t), t > 0 r > 0 ,

w(t) = φ(t) , −r ≤ t ≤ 0,
(1.2)

where f is continuous from [0,∞) to Rn, φ is continuously differentiable form [−r,0]
to Rn and r is a retardation. The coefficient matrices A,B,F are permutable, that is
AB = BA, AF = FA, BF = FB. Zhang et al.[18] look into the representation of the
solution to the neutral fractional linear differential system having a constant delay{

Cℶα

0+ (w(t)−Aw(t − r)) = Bw(t)+Fw(t − r)+ f (t), t > 0,
w(t) = φ(t) , −r ≤ t ≤ 0, (1.3)

where Cℶα

0+ is Caputo fractional derivative of order α, 0 < α < 1, r > 0, f is continu-
ous from [0,∞) to Rn A,B,F ∈Rn×n, and φ is continuously differentiable form [−r,0]
to Rn. In an attempt to solve system (1.3), Zhang et al.[18] exploited Laplace integral
transform. This produced some drawback and mistakes because the representation of
power series of the fundamental solution is unknowable.

In reference [2], Almeida consider a Caputo type fractional derivative with respect
to another function. Some features between the fractional derivative and integral,
Fermat’s Theorem, Taylor’s Theorem, and a lot more are studied. In reference [3],
Almeida et al. questionnaire existence and uniqueness results for the initial value
problem of nonlinear fractional differential equations involving a Caputo-type frac-
tional derivative with respect to another function with the help of the some standard
fixed point theorems and develop the Picard iteration method for solving numerically
the problem and obtain results on the long-term behavior of solutions.

Motivated by the above cited studies, we handle the below µ-Caputo type (more
general) fractional neutral differential multi-delayed equations with noncommutative
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matrices
C
0+ℶ

α
µ

[
w(t)−

d

∑
i=1

Aiw(t − ri)

]
= Bw(t)+

d

∑
i=1

Fiw(t − ri)+ℸ(t) , t ∈ (0,T ] ,

w(t) = ϕ(t) , −r ≤ t ≤ 0,
(1.4)

where the Caputo fractional derivative C
0+ℶ

α
µ is of order α ∈ (0,1). For each of i =

1,2,3, . . . ,d, Ai, B, Ci are square coefficient constant matrices which do not need to
be permutable and ri > 0 is a retardation and r := max{ri : i = 1,2,3, . . . ,d}. An
arbitrary vector function φ(x) is continuously differentiable and ℸ ∈ C ([0,T ] ,Rn)
with T = ld for a fixed l ∈ N. After finding the explicit solutions of (1.4), we obtain
the explicit solutions to the below equations (1.5)

C
0+ℶ

α
µ

[
w(t)−

d

∑
i=1

Aiw(t − ri)

]
= Bw(t)+

d

∑
i=1

Fiw(t − ri)+ℸ(t,w(t)) ,

w(t) = ϕ(t) , −r ≤ t ≤ 0,
(1.5)

where ℸ ∈C ([0,T ]×Rn,Rn) and the others are the same as (1.4).

Remark 1. By choosing Ai = Θ, i = 1,2,3, . . . ,d and µ(t) = t, µ-Caputo fractional
neutral differential multi-delayed equations with nonpermutable matrices overlaps
with fractional linear multi-delay differential equations in the study [13].

In the current work,

• we introduce the µ-neutral Caputo type fractional linear(or semi-linear) multi-
delayed differential equations with non-permutable constant coefficient
matrices,

• we propose newly the µ-neutral multi-delayed perturbation of two parameter
Mittag-Leffler type matrix function,

• we present a representation of a solution for the µ-neutral Caputo type frac-
tional linear(or semi-linear) multi-delayed differential equations with non-
permutable constant coefficient matrices by sharing the µ-neutral multi-
delayed perturbation of two parameter Mittag-Leffler type matrix function,

• we examine the existence and uniqueness of solutions of the µ-neutral frac-
tional multi-delayed differential equations’ system,

• we show the stability of the µ-neutral fractional order multi-delayed differen-
tial system in the sense of Ulam-Hyers, and illustrate the theoretical findings.

Now we remind a couple of well-recognized basic notions in the literature.
For n ∈ {1,2,3, ...}, the space Cn([0,T ] ,Rn) is all of continuously nth order dif-

ferentiable vector-valued functions from [0,T ] to Rn with ∥x∥C := supt∈[0,T ] ∥x(t)∥
for a norm ∥.∥ on Rn. For n = 0, C([0,T ] ,Rn) = C0([0,T ] ,Rn) is all of continuous
vector-valued functions. Let AC[0,T ] be the space of functions which are absolutely
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continuous on [0,T ]. We denote by ACn[0,T ] the space of complex-valued func-
tions f (x) which have continuous derivatives up to order n− 1 on [0,T ] such that
f (n−1)(x) ∈ AC[0,T ]. Let ℸ and an increasing function µ on [0,T ] be integrable and
continuously differentiable, respectively and let µ′(t) ̸= 0 t ∈ [0,T ]. µ-Riemann-
Liouville fractional integrals[8][2] of ℸ ∈ ACn[0,T ] of order α ∈ R+ and n ∈ N are
given by (RL

ג+0
α
µℸ
)
(t) :=

1
Γ(α)

∫ t

0
(µ(t)−µ(s))α−1ℸ(s)dµ(s),

where Γ(α) =
∫

∞

0 tα−1e−tdt with Re(α) > 0. µ-Riemann-Liouville fractional deriv-
atives[8][2] of ℸ ∈ ACn[0,T ] of order α > 0 are given by(RL

0+ℶ
α
µℸ
)
(t) =

1
Γ(n−α)

(
d

dµ(t)

)n ∫ t

0
(µ(t)−µ(s))n−α−1 f (s)dµ(s),

where n = [α]+ 1. If ℸ ∈ ACn ([0,T ],R) ,µ ∈ Cn ([0,T ],R) with µ is increasing and
µ′(t) ̸= 0 for every t ∈ [0,T ], then the µ-Caputo fractional derivatives[8][2] of ℸ of
order α is defined as

C
0+ℶ

α
µℸ(t) := RL

ג+0
n−α

µ)

(
1

µ′(t)
d
dt

)n

ℸ(t). (1.6)

From [8] and [2], We have, for R(α)≥ 0, R(β)> 0, and α ∈ (0,1),( C
0+ℶ

α
µℸ
)
(t) = RL

0+ ℶα
µ [ℸ(t)−ℸ(0)] , C

0+ℶ
α
µ [µ(t)]

β−1 =
Γ(β)

Γ(β−α)
[µ(t)]β−α−1

2. MAIN RESULTS

In the current section, we present our findings to begin with defining the µ-neutral
multi-delayed perturbation of Mittag-Leffler type matrix function. We look for a
solution of system (1.4) and prove the existence and uniqueness of solutions and
Ulam-Hyers stability of system (1.4).

2.1. The µ- neutral multi-delayed perturbation of Mittag-Leffler type matrix func-
tion

For now on, we exploit the µ-NMDP of ML function for the µ-neutral multi-delayed
perturbation of Mittag-Leffler type matrix function.

It is clear that a generalisation of the exponential function is the ML function.
Delayed and Delayed perturbed and multi-delayed perturbed versions which are called
delayed Mittag-Leffler type matrix function, delayed perturbation of Mittag-Leffler
type matrix function and multi-delayed perturbation of Mittag-Leffler type matrix
function by the numbers are presented in the work [9,12,13] respectively. In the cur-
rent study, the µ-NMDP of ML function is given through identifying matrix equation
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for Q j (s) for j = 0,1,2, . . .

Q j+1 (s1,s2, . . . ,sd) = BQ j (s1,s2, . . . ,sd)+
d

∑
i=1

FiQ j (s1,s2, . . . ,si − ri, . . . ,sd)

+
d

∑
i=1

AiQ j+1 (s1,s2, . . . ,si − ri, . . . ,sd) , (2.1)

Q0 (s1,s2, . . . ,sd) = Q j (−r1, . . . ,sd) = Q j (s1, . . . ,−rd) = Θ,

Q1 (0, . . . ,0) = I,

Q1 (s1,s2, . . . ,sd) = Θ, si ̸= 0.

where si = 0,ri,2ri, . . . , Θ is the zero matrix, and I is the unit matrix.
In the following definition, we give the function of µ-NMDP of ML type matrix with

the aid of the multivariate function Qk+1 (s1,s2, . . . ,sd)

Definition 1. The µ-neutral multi-delayed perturbation of the Mittag-Leffler type
matrix function X α,β

µ (t,s) is given by

X α,β
µ (t,s) =


Θ, −r ≤ t < 0, s ≥ 0,

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1
[µ(t)−µ(s+∑

d
j=1i jr j)]

kα+β−1
+

Γ(kα+β) , t ≥ 0, s ≥ 0,

(2.2)
where Qk+1 := Qk+1(i1r1, . . . , idrd), [t]+ = max(0, t).

Remark 2. Let µ(t) = t, and s = 0 in X α,β
µ (t,s). Then we have,

(1) For Ai = Fi = Θ, i = 1,2, . . . ,d, The µ-NMDP ML function reduces to the ML

function[19] i.e. X α,β
µ (t,s) = tβ−1Eα,β (Btα).

(2) For Ai = Θ, i = 1,2, . . . ,d and Fi = Θ, i = 2, . . . ,d, then the µ-NMDP ML
function matches up with delay perturbation of ML function [12].

(3) For Ai = Θ, i = 1,2, . . . ,d and Fi = Θ, i = 2, . . . ,d, B = Θ, X α,β
µ (t,s) reduces

to delayed ML function [9].
(4) The µ-NMDP ML function is not equal to that one of [13, Def. 3.3] because

the matrix Qk (s) for k = 0,1,2, . . . in (2.1) is different from that of the study
[13]. Under the condition Ai = Θ, i = 1,2, . . . ,d, however, they coincide.

(5) Since the constant matrices are commutative together with suitable selec-
tions, X α,β

µ (t,s) overlaps with X(t) in (2.4) in the work [15].
(6) By depending on suitable selections ri,Ai,Fi,B, i = 1,2, ...,d, one can easily

obtain ε
r1,r2
α,β (A ,B,F ;x) in Definition 3.1 in the work [5] from X α,β

µ (t,s).
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2.2. The µ-neutral multi-delayed Caputo fractional differential equations’ ana-
lytic solutions

First of all, we share beneficial theorem and lemma to be exploited in the next
proofs.

Theorem 1. Let X α,β
µ (t,s) be as defined in (2.2). The following holds true

C
0+ℶ

α
µ

[
X α,1

µ (t,0)−
d

∑
j=1

A jX α,1
µ (t,r j)

]
= BX α,1

µ (t,0)+
d

∑
j=1

FjX α,1
µ (t,r j)

Proof. Firstly, we compute the term C
0+ℶ

α
µ X α,1

µ (t,0).

C
0+ℶ

α
µ X α,1

µ (t,0) =
∞

∑
k=1

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)
C
0+ℶ

α
µ

[µ(t)−µ
(
∑

d
n=1 inrn

)]kα

+

Γ(kα+1)


=

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+2(i1r1, . . . , idrd)

[
µ(t)−µ

(
∑

d
n=1 inrn

)]kα

+

Γ(kα+1)
. (2.3)

One can obtain C
0+ℶ

α
µ X α,1

µ (t,r j) as follows by using the similar calculations.

C
0+ℶ

α
µ P µ

α,1 (t,r j) :=
∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+2(i1r1, . . . , idrd)

[
µ(t)−µ

(
r j +∑

d
n=1 inrn

)]kα

+

Γ(kα+1)
.

By combining (2.1) with (2.3), we keep calculating

C
0+ℶ

α
µ X α,1

µ (t,0)

= B
∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

[
µ(t)−µ

(
∑

d
n=1 inrn

)]kα

+

Γ(kα+1)

+
d

∑
j=1

Fj

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , i jr j − r j, . . . , idrd)

[
µ(t)−µ

(
∑

d
n=1 inrn

)]kα

+

Γ(kα+1)

+
d

∑
j=1

A j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+2(i1r1, . . . , i jr j − r j, . . . , idrd)

[
µ(t)−µ

(
∑

d
n=1 inrn

)]kα

+

Γ(kα+1)

= B
∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

[
µ(t)−µ

(
∑

d
n=1 inrn

)]kα

+

Γ(kα+1)

+
d

∑
j=1

Fj

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

[
µ(t)−µ

(
r j +∑

d
n=1 inrn

)]kα

+

Γ(kα+1)
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+
d

∑
j=1

A j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+2(i1r1, . . . , idrd)

[
µ(t)−µ

(
r j +∑

d
n=1 inrn

)]kα

+

Γ(kα+1)

= BX α,1
µ (t,0)+

d

∑
j=1

FjX α,1
µ (t,r j)+

d

∑
k=1

A j
(C

0+ℶ
α
µ X α,1

µ (t,r j)
)
.

which provides the craved result. □

Corollary 1. A solution of system (1.4) is

w(t) =

[
X α,1

µ (t,0)−
d

∑
j=1

X α,1
µ (t,r j)A j

]
ϕ(0),

provided that w(t) = ϕ(t) with −r ≤ t ≤ 0.

Proof. With the help of the variation of constants’ technique, set

w(t) =

[
X α,1

µ (t,0)−
d

∑
j=1

X α,1
µ (t,r j)A j

]
κ,

where a constant κ is unknown. It is clear that X α,1
µ (0,0) = I and X α,1

µ (0,r j) = Θ.
As a result, κ = ϕ(0). □

Lemma 1. Let X α,β
µ (t,s) be as in (2.2). The following mathematical equation is

true:∫ t

0
(µ(t)−µ(s))−α

∫ s

0
X α,α

µ (s,x)ℸ(x)dµ(x)dµ(s)

=
∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)
∫ t

0

Γ(1−α)
[
µ(t)−µ(x+∑

d
n=i inrn)

]kα

+

Γ(kα+1)
ℸ(x)dµ(x).

Proof. One can easily prove this theorem with the help of a simple substitution
v = µ(s)−µ(x+∑

d
n=1 inrn)

µ(t)−µ(x+∑
d
n=1 inrn)

together with the expansion of X α,α
µ , so it is ignored. □

Now, the coming theorem is one of main theorems as to the desired solutions. It
gives a part of the solution under the zero initial condition .

Theorem 2. The following function

w(t) =
∫ t

0
X α,α

µ (t,s)ℸ(s)dµ(s), t ≥ 0,

is a solution of system (1.4) under the condition w(t) = 0 with −r ≤ t ≤ 0.

Proof. To see this, we consider the following expression by keeping Lemma 1 in
mind

C
0+ℶ

α
µ

(∫ t

0
X α,α

µ (t,x)ℸ(x)dµ(x)
)
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=
1

Γ(1−α)

d
dµ(t)

∫ t

0
(µ(t)−µ(s))−α

∫ s

0
X α,α

µ (s,x)ℸ(x)dµ(x)dµ(s)

=
∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

× d
dµ(t)

∫ t

0

[
µ(t)−µ(x+∑

d
n=1 inrn)

]kα

+

Γ(kα+1)
ℸ(x)dµ(x)

=
∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

× d
dµ(t)

∫ t−∑
d
n=1 inrn

0

[
µ(t)−µ(x+∑

d
n=1 inrn)

]kα

+

Γ(kα+1)
ℸ(x)dµ(x)

=
∞

∑
k=1

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

× d
dµ(t)

∫ t−∑
d
n=1 inrn

0

[
µ(t)−µ(x+∑

d
n=1 inrn)

]kα

+

Γ(kα+1)
ℸ(x)dµ(x)+ℸ(t)

=
∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+2(i1r1, . . . , idrd)

×
∫ t

0

[
µ(t)−µ(x+∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
ℸ(x)dµ(x)+ℸ(t) . (2.4)

One can easily obtain

C
0+ℶ

α
µ

(∫ t

0
X α,α

µ (t,x+ r j)ℸ(x)dµ(x)
)
=

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+2(i1r1, . . . , idrd)

×
∫ t

0

[
µ(t)−µ(x+ r j +∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
ℸ(x)dµ(x)

By having Lemma 1 in mind, we combine (2.1) with (2.4) to obtain the following

C
0+ℶ

α
µ

(∫ t

0
X α,α

µ (t,x)ℸ(x)dµ(x)
)

= B
∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

×
∫ t

0

[
µ(t)−µ(x+∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
ℸ(x)dµ(x)+ℸ(t)
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+
d

∑
j=1

Fj

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , i jr j − r j, . . . , idrd)

×
∫ t

0

[
µ(t)−µ(x+∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
ℸ(x)dµ(x)

+
d

∑
j=1

A j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+2(i1r1, . . . , i jr j − r j, . . . , idrd)

×
∫ t

0

[
µ(t)−µ(x+∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
ℸ(x)dµ(x)

= B
∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

×
∫ t

0

[
µ(t)−µ(x+∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
ℸ(x)dµ(x)+ℸ(t)

+
d

∑
j=1

Fj

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

×
∫ t

0

[
µ(t)−µ(t + r j +∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
ℸ(x)dµ(x)

+
d

∑
j=1

A j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+2(i1r1, . . . , idrd)

×
∫ t

0

[
µ(t)−µ(x+ r j +∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
ℸ(x)dµ(x)

= B
∫ t

0
X α,α

µ (t,x)ℸ(x)dµ(x)+
d

∑
j=1

Fj

∫ t

0
X α,α

µ (t,x+ jk)ℸ(x)dµ(x)+ℸ(t)

+
d

∑
j=1

A j

[
C
0+ℶ

α
µ

(∫ t

0
X α,α

µ (t,x+ r j)ℸ(x)dµ(x)
)]

which gives the inevitable result. □

The next theorem is the last one of main theorems as to a solution of the homo-
geneous part of system (1.4).
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Theorem 3. The following Rn-valued continuous function

w(t) =
d

∑
j=1

∫ 0

−r j

X α,α
µ (t,r j + s)

[
Fjϕ(s)+A j

(C
0+ℶ

α
µ ϕ
)
(s)
]

dµ(s)

is a solution of system (1.4) with w(t) = ϕ(t), −r ≤ t ≤ 0 and ℸ= 0.

Proof. Now we consider

C
0+ℶ

α
µ

(
d

∑
j=1

∫ 0

−r j

X α,α
µ (t,r j + x)Fjφ(x)dµ(x)

)

= C
0+ℶ

α
µ

( d

∑
j=1

∫ 0

−r j

∞

∑
k=1

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

×
[
µ(t)−µ(x+ r j +∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
Fjϕ(x)dµ(x)

)
= C

0+ℶ
α
µ

( d

∑
j=1

∫ 0

−r j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+2(i1r1, . . . , idrd)

×
[
µ(t)−µ(x+ r j +∑

d
n=1 inrn)

]kα+2α−1
+

Γ(kα+2α)
Fjϕ(x)dµ(x)

)
(2.5)

By applying (2.1) to (2.5), we get

C
0+ℶ

α
µ

(
d

∑
j=1

∫ 0

−r j

X α,α
µ (t,x+ r j)Fjϕ(x)dµ(x)

)

= B
d

∑
j=1

∫ 0

−r j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

×C
0+ℶ

α
µ

[
µ(t)−µ(t + r j +∑

d
n=1 inrn)

]kα+2α−1
+

Γ(kα+2α)
Fjϕ(x)dµ(x)

+
d

∑
m=1

Cm

d

∑
j=1

∫ 0

−r j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , imrm − rm, . . . , idrd)

×C
0+ℶ

α
µ

[
µ(t)−µ(x+ r j +∑

d
n=1 inrn)

]kα+2α−1
+

Γ(kα+2α)
Fjϕ(x)dµ(x)

+
d

∑
m=1

Am

[
C
0+ℶ

α
µ

( d

∑
j=1

∫ 0

−r j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+2(i1r1, . . . , imrm − rm, . . . , idrd)

×
[
µ(t)−µ(x+ r j +∑

d
n=1 inrn)

]kα+2α−1
+

Γ(kα+2α)
Fjϕ(x)dµ(x)

)]
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= B
d

∑
j=1

∫ 0

−r j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

×
[
µ(t)−µ(x+ r j ∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
Fjϕ(x)dµ(x)

+
d

∑
m=1

Cm

d

∑
j=1

∫ 0

−r j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

×
[
µ(t)−µ(x+ r j + rm +∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
Fjϕ(x)dµ(x)

+
d

∑
m=1

Am

[
C
0+ℶ

α
µ

( d

∑
j=1

∫ 0

−r j

∞

∑
k=0

∞

∑
i1,i2,...,id=0

Qk+1(i1r1, . . . , idrd)

×
[
µ(t)−µ(x+ r j + rm +∑

d
n=1 inrn)

]kα+α−1
+

Γ(kα+α)
Fjϕ(x)dµ(x)

)]
= B

(
d

∑
j=1

∫ 0

−r j

X α,α
µ (t,x+ r j)Fjϕ(x)dµ(x)

)

+
d

∑
m=1

Cm

(
d

∑
j=1

∫ 0

−r j

Pα,α (t,x+ r j + rm)Fjϕ(x)dµ(x)

)

+
d

∑
m=1

Am

[
C
0+ℶ

α
µ

(
d

∑
j=1

∫ 0

−r j

X α,αµ (t,x+ r j + rm)Fjϕ(x)dµ(x)

)]
.

which provides ∑
d
j=1

∫ 0
−r j

X α,α
µ (t,x+ r j)A j

(
C
0+ℶ

α
µ ϕ
)
(x)dµ(x). In a similar way, it

can be easily shown that ∑
d
j=1

∫ 0
−r j

X α,α
µ (t,x+ r j)Fjϕ(x)dµ(x) is a solution. Further-

more, summation of them is also a solution due to superposition technique. This
completes the proof. □

So far we have found the parts of the stepwise solution, now let’s put the parts
together in the below corollary which stands for a whole solution of system (1.4).

Corollary 2. The following Rn-valued continuous function

w(t) =

[
X α,1

µ (t,0)−
d

∑
m=1

X α,1
µ (t,rm)Am

]
ϕ(0)+

∫ t

0
X α,α

µ (t,s)ℸ(s)dµ(s)

+
d

∑
m=1

∫ 0

−rm

X α,α
µ (t,s+ rm)

[
Fmϕ(s)+Am

(C
0+ℶ

α
µ ϕ
)
(s)
]

dµ(s)
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is an exact analytical solution of system (1.4). In the light of Corollary 2, one can
easily acquire a mild Volterra type integral equation’s solution formula of system
(1.5).

Remark 3. Here are some special cases depending on selections of the coefficient
matrices. For µ(x) = x and y = 0

(1) If A j = Θ, j = 1,2, . . . ,d and Fj = Θ, j = 2, . . . ,d, then Corollary 2 matches
up with Corollary 1 in the reference [12].

(2) Corollary 2 with ℸ= 0 reduces to Theorem 3.2 in the work [9] providing that
a j = Θ, j = 1,2, . . . ,d and Fj = Θ, j = 2, . . . ,d, B = Θ.

(3) Corollary 2 overlap with Theorem 4.2 in the study [13] under the condition
A j = Θ, j = 1,2, . . . ,d.

(4) Even if the constant coefficient matrices are commutative, our findings also
are valid. If the coefficient matrices are permutable in addition to appropriate
selections, Corollary 2 reduces to Theorem 6 in the paper[15].

(5) Corollary 2 reduces to Theorem 3.5 in the paper[5] on taking d = 2 and
without loss of generality A1 = F2 = Θ.

2.3. Existence and uniqueness of solutions of neutral fractional multi-delayed dif-
ferential equations’ system

In this subsection, we look for answers to three kinds of questions : is there a solu-
tion for system (1.5)?, is the solution unique? Subsequent to given answers, we finis
discussing. When we look at features of each term in system (1.5) like ℸ(t,w(t)) is
continuous, we find an explicit solution in corollary 2. Unfortunately, these features
or conditions are not enough to make the explicit solution unique. So, we add one
more feature to the continuous function ℸ(t,w(t)) in order to make the explicit solu-
tion satisfy the uniqueness. This feature is that the continuous function ℸ(t,w(t))
satisfies the Lipschitz condition in the second component with the Lipschitz constant
Lℸ, that is

∥ℸ(t,w(t))−ℸ(t,u(t))∥ ≤ Lℸ ∥w(t)−u(t)∥ .
Prior to carrying on, we discuss an inequality about X α,β

µ in the following lemma.

Lemma 2. Let X α,β
µ (t,s) be as in (2.2).∫ t

0

∥∥∥X α,β
µ (t,s)

∥∥∥dµ(s)≤ (µ(t)−µ(0))
∥∥∥X α,β

µ (t,0)
∥∥∥

holds true.

Proof. In order to see whether the above inequality is true, it is sufficient to use[
µ(t)−µ

(
s+∑

d
j=1 i jr j

)]
≤
[
µ(t)−µ

(
∑

d
j=1 i jr j

)]
along with the expansion X α,β

µ (t,s).
So, it is omitted. □

The following theorem is about existence and uniqueness of system (1.5).
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Theorem 4. If the continuous function ℸ(t,w(t)) satisfies the Lipschitz condition
in the second component with the Lipschitz constant Lℸ with

Lℸ (µ(T )−µ(0))
∥∥X α,α

µ (T,0)
∥∥< 1,

then the integral equation in the corollary 2 is of a unique solution in [−d,T ].

Proof. Define G : C ([−r,T ] ,Rn)→C ([−r,T ] ,Rn) by

Gw(t) =

[
X α,1

µ (t,0)−
d

∑
m=1

X α,1
µ (t,rm)Am

]
ϕ(0)+

∫ t

0
X α,α

µ (t,x)ℸ(x,w(x))dµ(x)

+
d

∑
m=1

∫ 0

−rm

X α,α
µ (t,x+ rm)

[
Fmϕ(x)+Am

(C
0+ℶ

α
µ ϕ
)
(x)
]

dµ(x)

For arbitrary w,u ∈C ([−r,T ] ,Rn), we consider by using Lemma 2

∥Gw(t)−Gu(t)∥ ≤
∫ t

0

∥∥X α,α
µ (t,s)

∥∥∥ℸ(s,w(s))−ℸ(s,u(s))∥ds

= Lℸ (µ(T )−µ(0))
∥∥X α,α

µ (T,0)
∥∥∥w−u∥C .

The statements of this theorem ensure that G is a contraction. By the Banach Contrac-
tion principle, G is of a unique fixed point on [−r,T ], that is ∃!w0 ∈C ([−r,T ] ,Rn),
w0 (t) = Gw0 (t). □

2.4. Stability of neutral fractional order multi-delayed differential system in the
sense of Ulam-Hyers

We investigate the stability of system (1.5).

Definition 2. Let ε > 0. The system (1.5) is said to be Ulam-Hyers stable if for
every solution w ∈C ([0,T ] ,Rn) of inequality,∥∥∥∥∥C

0+ℶ
α
µ

[
w(t)−

d

∑
i=1

Aiw(t − ri)

]
−Bw(t)−

d

∑
i=1

Fiw(t − ri)−ℸ(t,w(t))

∥∥∥∥∥≤ ε, (2.6)

there exists a solution w0 ∈C ([0,T ] ,Rn) of system (1.5), and η > 0 such that

∥w(t)−w0 (t)∥ ≤ η.ε, t ∈ [0,T ] .

Remark 4. A function w ∈ C1 ([0,T ] ,Rn) is a solution of the inequality equation
(2.6) if and only if there exists a function z ∈C1 ([0,T ] ,Rn), such that ∥z(t)∥< ε and
C
0+ℶ

α
µ
[
w(t)−∑

d
i=1 Aiw(t − ri)

]
= Bw(t)+∑

d
i=1 Fiw(t − ri)+ℸ(t,w(t))+ z(t).

Theorem 5. Suppose that all of the assumptions of Theorem 4 are hold. Then
system (1.5) is Ulam-Hyers stable.
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Proof. Let w ∈C ([0,T ] ,Rn) be a solution of the inequality (2.6), i.e.∥∥∥∥∥C
0+ℶ

α
µ

[
w(t)−

d

∑
i=1

Aiw(t − ri)

]
−Bw(t)−

d

∑
i=1

Fiw(t − ri)−−ℸ(t,w(t))

∥∥∥∥∥≤ ε.

(2.7)
Let w0 ∈C ([0,T ] ,Rn) be the unique solution of system (1.5), so that

C
0+ℶ

α
µ

[
w0 (t)−

d

∑
i=1

Aiw0 (t − ri)

]
= Bw0 (t)+

d

∑
i=1

Fiw0 (t − ri)+ℸ(t,w0(t))

for each t ∈ [0,T ] and 0 < α < 1, w0 (t) = w(t) with −r ≤ t ≤ 0. By combin-
ing Remark 4 and equation (2.7), there exists a function z ∈ C ([0,T ] ,Rn) such that
∥z(t)∥< ε,

C
0+ℶ

α
µ

[
w(t)−

d

∑
i=1

Aiw(t − ri)

]
= Bw(t)+

d

∑
i=1

Fiw(t − ri)+ℸ(t,w(t))+ z(t) . (2.8)

So we deduced the solution w(t) from (2.8) with the aid of Corollary 2 and the
function G ,

w(t) = Gw(t)+
∫ t

0
X α,α

µ (t,x)z(x)dµ(x)

So we have the following estimation

∥Gw(t)−w(t)∥ ≤
∫ t

0

∥∥X α,α
µ (t,s)

∥∥∥z(s)∥dµ(s)≤ (µ(T )−µ(0))
∥∥X α,α

µ (T,0)
∥∥ε.

By the fixed point property of the operator G given in the proof of Theorem 4, we
obtain

∥w0 (t)−w(t)∥ ≤ ∥Gw0 (t)−Gw(t)∥+∥Gw(t)−w(t)∥
≤ Lℸ (µ(T )−µ(0))

∥∥X α,α
µ (T,0)

∥∥∥w−u∥C

+(µ(T )−µ(0))
∥∥X α,α

µ (T,0)
∥∥ε.

By taking C-norm on the left hand side and then rearranging the above equation(
1−Lℸ (µ(T )−µ(0))

∥∥X α,α
µ (T,0)

∥∥)∥w−u∥C ≤ (µ(T )−µ(0))
∥∥X α,α

µ (T,0)
∥∥ε,

then we get the desired result

∥w−u∥C ≤ η.ε, η =
(µ(T )−µ(0))

∥∥X α,α
µ (T,0)

∥∥(
1−Lℸ (µ(T )−µ(0))

∥∥X α,α
µ (T,0)

∥∥) > 0.

□

Remark 5. It is clear as day that all findings are valid when the coefficient matrices
are commutative.
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3. AN ILLUSTRATED EXAMPLE

We will consider
√

t-Caputo type fractional neutral differential multi-delayed equa-
tions 

C
0+ℶ

0.8
µ [w(t)−A1w(t −0.3)−A2w(t −0.2)] = Bw(t)

+F1w(t −0.3)+ et

4(1+et) sin(w(t)) , t ∈ (0,0.6] ,

w(t) =
(
t3 2t +1

)T
, −0.3 ≤ t ≤ 0,

(3.1)

where µ(t) =
√

t, and

A1 =

(
0.170 0.830

0 0.350

)
,A2 =

(
0.36 0.64
0.07 0.11

)
,B =

(
0.33 0
0.03 0.125

)
,

and

F1 =

(
0.43 470
0.03 0.125

)
,

which are pairwise noncommutative matrices, e.g., A1A2 ̸= A2A1, A1B ̸= BA1, A2B ̸=
BA2, F1A2 ̸= A2F1,etc. With the well-known maximum absolute row sum of the mat-
rix ∥.∥

∞
; ∥A1∥∞

= 1, ∥A2∥∞
= 1, ∥B∥

∞
= 0.33, and ∥F1∥∞

= 1. One can easily check
that ℸ(t,w(t)) = et

4(1+et) sin(w(t)) is continuous in addition being the Lipschitz func-
tion with the Lipschitz constant Lℸ = 0.25 and

Lℸ (µ(0.6)−µ(0))X ∥A1+A2∥∞
,∥B∥

∞
,∥F1∥∞

µ,0.8,0.8 (0.6,0)∼= 0.0509175 < 1.

Hence, all of conditions of Theorem 4 and 5 holds, so system (3.1) which has an
unique solution is Ulam-Hyers stable.

4. CONCLUSION

In the current paper, we firstly introduce the µ-neutral Caputo type fractional
linear multi-delayed differential equations with non-permutable constant coefficient
matrices. To obtain a representation of a solution for it, we newly define the µ-neutral
multi-delayed perturbation of two parameter Mittag-Leffler type matrix function. We
consider the existence and uniqueness of solutions and Ulam-Hyers stability of the
µ-neutral fractional multi-delayed differential equations’ system.

In terms of qualitative properties and fractional differential equations, this paper
includes many different kinds of comprehensive studies[12,13,15] because for some
special cases of µ, we obtain the classical Caputo fractional derivative [8, 17],
Hadamard fractional derivative [8], the Caputo–Hadamard fractional derivative [4]
and the Caputo–Erdélyi–Kober fractional derivative[11].

The next possible further work can be devoted to study asymptotic stability, expo-
nential stability, finite time stability, and also Lyapunov type stability of the µ-neutral
Caputo fractional multi-delayed differential equations with noncommutative coeffi-
cient matrices as well as its relative controllability and iterative learning controllab-
ility. Another possible direction for additional studies is to extend our system (1.4)
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to µ-fractional functional evolution equations and all possibilities as noted just above
can be questioned once again for this new system.
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