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Abstract. In this paper, we investigate the dynamical behavior of a two dimensional discretized
prey predator system. The model is formulated in terms of difference equations and derived by
using the higher-order implicit Runge Kutta method with a very small step size to attain a discrete
time version of its continuous counterpart. The existence of fixed points as well as their local
asymptotic stability are proved. Further, it is shown that the model experiences Neimark-Sacker
bifurcation (NSB for short) and the periodic doubling bifurcation (PDB) in a small neighbor-
hood of the coexistence fixed point under certain parametric conditions. This analysis utilizes
bifurcation theory and the center manifold theorem. The chaos influenced by NSB is stabilized.
Finally, we use numerical simulations and computer analysis to check our theories and show
more complex behaviors.
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1. INTRODUCTION

When a predator and its prey interact, the population dynamics may be represented
using a prey-predator model that is either discrete or continuous (in time) [10, 14].
Discrete time prey-predator models based on difference equations are best suited for
predicting and describing the dynamics of populations with non-overlapping gen-
erations [6]. The discrete case is especially important because it can exhibit more
interesting dynamic behaviors, including bifurcations and chaos. It may also offer
a more efficient computational model for numerical simulations. Controlling chaos
in nonlinear dynamical systems is a challenging area of research. Chaos occurs sud-
denly and might lead to unpredictable behavior.

In [8], a discrete time predator prey model with six parameters is investigated, and
the hybrid control strategy is applied to control Neimark-Sacker bifurcation. The
Neimark-Sacker bifurcation in a discrete time glycolytic oscillator model have been
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studied in [11]. Prime period and periodic points of the discrete model are invest-
igated. A further hybrid control strategy is applied to control chaos influenced by
Neimark-Sacker bifurcation. In [1], nonlinear dynamics and chaotic behavior of a
multi-strain tuberculosis model under the fractal fractional operator in Atangana-
Baleanu sense are established. In [20], the local dynamics of a discrete nonlinear
prey—predator model are obtained on asymptotic properties of fixed points and Nei-
mark—Sacker bifurcations. Some results on the global stability are studied. In [17],
a new approach related to the global stability are established for a special class of
discrete time evolutionary models for both single species and multi-species dynam-
ics, that are derived according to the evolutionary game theory. The reader interested
to other works on the asymptotic stability, bifurcation theory and chaos control is
referred to, among many others, to [3,4,7,9,11,12,14,15,15,16,19,21].

Motivated by the previous cited works, we consider the following class of prey-
predator system incorporating Holling functional response type IV and nonlinear har-
vesting in the prey [22]

dx xy ax
Z—x(l—x)— S — , 1.1
dt *1=x) I +x+p x+b (.1

Functional response Holling IV Nonlinear harvesting

dy dy
Z=cyl1-= 1.2
o cy< P ) (L.2)

here x and y model the prey and predator densities, respectively. All the model’s
parameters a, b, ¢, d, o, B are nonnegative. The coefficient o is the tolerance of the
prey, P represent half saturation constant. The parameters b stands for the effort
of harvesting, and c is intrinsic growth rate of the predator. Finally, the parameter
d models the amount of prey required to support one predator at equilibrium. The
qualitative behavior of (1.1)-(1.2) is investigated in [22]. In [2], Euler scheme is
implemented to discretize the system (1.1)-(1.2). In this work, arguing as in [18],
and considering that the variables and functions switch only at regular intervals, the
following formula is built through the conversion form (1.1)-(1.2) by implementing
the largest integer function [¢]:

1 dx_ ) — y[t] B a

0T P S B (-
Ly (| ]

@) di <1 X[ )>, (1.4)

applying the piecewise constant arguments method for differential equations [¢], thus
integrating the system (1.3)-(1.4) on the interval [n,n + 1] we have

Xn+1 Yn a
In =(1—x,)— — ,
Xn ( ) éxﬁ—i—xn—i—ﬁ X, +b

(1.5)
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d
n 241 :c(l— y")). (1.6)
Yn Xn
Forn=0,1,2..., we obtain the following discrete time model.
Yn a
Xpil = XpeX 1—x,)— — , 1.7a
n+1 n p(( n) éX%ernﬂLﬁ xn—l—b> ( )

Ynt1 = Yn€Xp (c(l—dy”>>. (1.7b)
Xn

The aim of this research is to find the system’s fixed points (1.7a)-(1.7b) and analyze
the asymptotic stability conditions of these fixed points. Furthermore, the interesting
aspect of this study, is to prove rigorously, by using center manifold theory, that the
system possesses NSB and PDB near the positive fixed point. Moreover, we control
the chaos influenced by NSB. The paper is organized as follows: In Section 2, the
existence and asymptotic stability of the fixed points are investigated. In Section 3,
we prove that the discretized system admits NSB near the coexistence fixed point.
The existence of PDB is also proved analytically by using center manifold theory in
Section 4. A state feedback method is implemented to control chaos in Section 5.
Finally, some numerical simulations are given in 6, followed by a conclusion in 7.

2. EXISTENCE OF THE FIXED POINTS AND THEIR STABILITY

The fixed points for the system (1.7) are the solutions of the two isoclines

y a dy
1—x)— — =0, 1-—=0. 2.1
(1=x) I +x+p x+b 7 x @1

For y = 0, it follows that the system (1.7) has two boundary fixed points noted (x;,0)
and (x2,0), where x; and x, are the roots of the quadratic equation x> 4 (b — 1)x +

1—bt+/(1+b)2—4
a—b =0, where x;, = # and (1+ b)? > 4a. Moreover, we assume

that0<b<landb<a< %(b + 1)2, then both x; and x; are positive. Let xj» =X
and we write the boundary fixed point E; (%,0).

For the coexistence fixed point E,(x*,y*) the components are given as follows
v = éx*, where x* is a positive real root for the quadratic equation

OC])C4 + 0sz3 + 063x2 + oyx+ o5 =0.

where oo =d, ap =d(o+b—1), 03 =d(o(f—1)+a+b(a;))+ o, and oy =
oad+ (b—1)Bb—bd +b), os = 0fd(a — b). Arguing as [22], there exist a unique
. . . 2
coexistence fixed point. We rewrite (2.1)as y = § andy = (1 —x — ;55) (B4 % +x).
The Jacobian matrix of the system (1.7a)-(1.7b) at any fixed point (x,y) is given by

o) = (022 22)

21 J2
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where
. y a
=exp|1l—x— —
J11 p( (éx2+x+l3) x+b>
X [T=x"( 1=y ¢ + ,
[ ( (y (Lx24x+B)2 (¢ +b)?
i * exp<1 Y - >
]12:_17 —X— 1 - )
X2 +x+p (X2 +x+Pp) x+b
) cdy? dy
= 1——
J21 2 eXp <C( x))’
d
i =ex(ct1-a2)) (1-2).
x x
The fixed point £ (K,0) has two eigenvalues A; = 1 —x(l — (xfb)z> and A, = exp(c)

with A > 1. Thus both the boundary fixed point E;(x,0) of the system (1.7) are
unstable.
For the fixed point E; (x*,y* = %), we have

* * (%"‘1) *

J(Ez) _ 1—x (1 - <)’ (éx*2+x*+[3)2 + (x*ib)2>> - éX*ziX*+B ) (23)
< l1—c

d

The characteristic equation associated to (2.3) is [0]

N2 —trJ (Ex)n +detJ(E>) = 0, (2.4)
where
. ) a
tJ(Ey) =2—x (1 - <y (L2 42 + By + (x*+b)2)> —c, (2.5)
and

desz) = (1 1- (y*@xﬂgz;llmz aeiae)) )0

cx*

Cx*2 +dx* +dp

The discriminant of (2.4) is

A=tr (J(E2)> T 4det (J(Ez)) . 2.7)



DYNAMIC ANALYSIS AND CHAOS CONTROL FOR A DISCRETE PREDATOR-PREY SYSTEM 925

(L2 1B) | (0 +D)
2d(x*<1— <y o (Ziﬁﬁ et )) >
d<x* (1 - (y*( (Zjlﬂs o) >) 2) *2+x +B
dx* (1 - <y*( (*ZZX+;1+B x*+h ))
d <x* (1 - (y*mf*z;?mz + <x*ib>2>> 1) + Tﬂi

The coexistent fixed point E; is locally asymptotically stable if A| < ¢ < Ay and
unstable otherwise. E; is nonhyperbolic if either c = A1 or ¢ = A».

20
Theorem 1. We assume x* (1 — (y* ) + =4 2>) > 2, and we set

Al =

Ay =

2
Theorem 2. We assume x* (1 — (y* T ;*21;«2[3)2 + (x*_‘ib)z >> > 2, and we set

N 2x +1 a
-l )

A= o)
d<x*<l_<y*< CAn R O )) 2) T
« . (B4
dx <1_<y ( X*2+X*+B erb )>
Ay =

) . (B4 '
d<x (1 B (y Tt epE + whop >) 1) +Tx+5

The coexistent fixed point E; is locally asymptotically stable if A; < ¢ < Ay and
unstable otherwise. E, is nonhyperbolic if either c = Ay or c = Ay.

3. NEIMARK SACKER BIFURCATION

If the discriminant A defined in (2.7) is negative and ¢ = A; hold, then the eigen-
values of (2.7) are pair of conjugate complex numbers with modulus 1. Thus, this
conditions can be written as

v~ {(epabea>0a<0c=n G.1)

If we vary c in the neighborhood of ¢ = ¢ keeping other parameters in (3.1) constant,
then the coexistence fixed point E; undergoes Neimark-Sacker bifurcation. Taking a
perturbation ¢* where (¢* < 1) of the parameter c in the neighborhood of ¢ = ¢ in the
system (1.7a)-(1.7b), we have

Yn a *
Xpa] = XpeX 1—x,)— — = f(Xu,Yn,C"), 3.2a
n+1 n P(( n) éx%—i—xn—i—ﬁ Xn+b> f( nyYn ) ( )
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dy, N
Yn+1 = Yn€Xp ((C"_C*) <1_ - ))) :g(xnaymc ) (3.2b)

Xn

We transform the (3.2) into the origin (v, = x, —x* and w, = y,, —y*), and expanding
the resulted system up to second order near the origin, one obtain

Vit = Y1Vn +Y2Wn + Y12VaWn +Y11V5 + Y2y + O ((I Va | 4| Wn |)2> ,  (33a)
Wptl = 811/,, +82Wn +812\/an +811vﬁ +822W% + 0<(| Vn | + | Wy ’)2> , (3.3b)

where

41
Yl_fX(X*ay*ao)_l_X*(l_(y* (OC - ) + - )2))7

(éx*Z_i_x*_i_B)Z (x*+b

*

X
Y2 :ﬂ(X*ay*vo) =71 . " s
ax 2+x +I3
. 71+x* 2X*2+(XJC* 2x*2 *+(XJC* *
le :fx)’(x ,y*,O) = x*2 * + x*2 * 2 o X*Zy * y3
SR o +x+B)? alls +xr+P)

ax®

(x+D)2 (22 43 +B)’
zx*y* + (Xy* +y*x* 4x*2y* 4 (XZX*y* _|_4ax*2y*

Y11 = fxx(X*ay*ao) =—1+

(% +x"+p)>? (35 +x +P)°
2x*3y*2 + 2(X,X*2y* y*2x* 2x*2y*a 4 Ocax*y*
*2 % *2 % *2 %
(- +x B 205+ x4+ B)* x4 b)2 (5 +xt+B)?
i a ax n a*x* 20 2y* + ot y* ax* . x*
(x+0)*  (x+b)* 20 +b)t (X par B2 (D) 27
x*

— **0:
= Fole'0) = 2

C
61 237
82:1—0,
812:gxy(x Y ,0):;(2—;),
v ox oy CX c
611 :gxx(x 7y ’0) - 2d (_l+ﬁ)7
cd c

822 = g ("3",0) = S (~143).
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The roots of the characteristic equation associated with the linearized map (3.3) at
(v, wy) = (0,0) are given by

Nia(c) = trJ (c*) & i\/4de;J(c*) — (tr(c*))27 Mua(c)] = \/deti ().

When ¢* = 0, we have

d
Mzl s, (3.4)
dc*

Additionally, we required that when ¢* =0, ', # 1, m=1,2,3,4. This is equivalent
to trJ(0) # —2,—1,1,2.
Let { = Re(M12), and § = Im("N; 2). The model (3.3) is written as

Vn+1 _ Y1 Y2 Vn + Y12VaWn +Y11V121 +Y22W121 Q3 5)
Wit1 o & W 812Vuwn +811v2 + 8ow?2 ) '

Let us consider the invertible matric P associated to the eigenvalue 1 » = {+ i€,

F= ( szYl —Oi )

Using the following translation

(o )=(5 %))

The system (3.5) can be written as

Xn+1 _ Y1 Y2 Xn ]7 (Xnvyn)
P(5)=(8 8 )r (3 )+ (e )

det(J(0)) =1 ,and

where
F(Xo,Yy) = (vlm(c 1)+ +122(C —71)2>X3 - <vlzvz<2
PRGN )Xoty + R
001 = (SutC— )+ B+ 8L )33 - (B
#2082 ) oty + SN
Thus ~
(5)-(4 92 (1)
where

1
= 0
—1
P :( = L )
&n €
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Xn 1 _ C —E; Xn F(XnaYn)
( oo ) - < g ) ( v, )*( G(X,.Y,) > G0

F(X,,Y,) = ;2 (leYz(C M)+ +Y22(C—Y1)2>X3

with

1 1
L (mza L2l mza) XYy + Lym2r2,
Y2 Y2

and

G(X,,Y,) = <C§YYI (leYz(C )+ 12 (C—7) )

—§<61272(C—\(1 )+ +3n(C—71) ))Xf

- (C‘” <Y12Y2§+2(C—71)722§) -2 (fmvzé

&n
o 2 S 2
+2(C—'Y1)522§>>XnYn+ <(§ ’Yl)’YZZ§ - 22& )Ynz
&y g
In order for (3.6) to undergo a Neimark Sacker bifurcation, it is required that the
following quantity is non zero [13]

1 -2 1 _
N = —93[( 1_11])11 TuTzo] ~3 |t > = |02 |? +R(MT21), 3.7

where

(; (ylzyz C—v)+mv+12(—m) 2) 127225
+< (leYzE..JrZ C—m Y225.~> L (8mE+20C - 322&)))
(

gan
< (Y1272§ Y1)+ Y0+ V2§ — Yl))
(71272§+2 C—n Yzz&))]

<Y12Y2 C—v)+mm+12C—m) >+1Y22§2>

& i

Toz—*
4

.‘5\~

1
171125

+i <71272C 1) +11% + 12— 1) >

SN R
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- é <512Y2(C—Yl) +31173 +822(§ —Y1)2>>

(SRE))

T2 = % [(; <Y12Y2(CY1) Y73 +722(CY1)2>

2

- ;Zﬁmﬁ2 - ( ngzl <Y12Y2§ +2(8—v )722§>

- (serzra-menz) ))

+i<<%;1§1 (levz(C—Yl) +Y73 +Y22(C—Y1)2>

- é <512Y2(C ~1)+ 8B +C2(C _Y1)2>>
N (Cﬁ_\(zl (71272§+2(C—Y1)Y22§>
1

E <312Y2§ +2(C—m )522§> ) + ;2 <Y12¥2§ +2(8— Yl)Yzz&) )] ,

T = 0.
Based on the above analysis, we state the following result on NSB.

Theorem 3. If the condition (3.4) holds and N defined in (3.7) is nonzero then the
model (1.7a)-(1.7b) undergoes NSB about the coexistent fixed point E>(x*,y*) when
c* varies near the origin. and (,B,a,b,c,d) € Np. Moreover, if N < 0 (N > 0) then
an attracting (respectively repelling) invariant closed curve bifurcates from the fixed
point E»(x*,y*) for ¢ > ¢ (respectively, ¢ <€ ).

4. PERIOD DOUBLING BIFURCATION

For the fixed point E, (x*,y*) associated to the system (1.7a)-(1.7b). We define the
space Py as

Py= {c = A1, t2J(Ey) > 4detd(Er), (oB,a.b,c.d)> 0 } @.1)

one of the eigenvalues of J(x*,y*) is —1 and the other is neither 1 nor —1. Therefore
the system (1.7a)-(1.7b) undergoes PDB at the fixed point E(x*,y*) if ¢ varies in
the small neighborhood of ¢ = ¢ and (a.,B,a,b,c,d) € P;. Giving a perturbation ¢*
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(where ¢* < 1) of the parameter c¢ in the neighborhood of ¢ = ¢ to the system (1.7a)-
(1.7b) which is rewritten as follows

y a *
Xptl = Xp€X 1—x,)— — = f(xn,Yn,C"), 4.2a
ammer (1m0 - e ) ), @2
* dyn *
Yn+1 = Yn€Xp (C‘|‘C ) 1— X ) :g(xnaynac ) (4.2b)
Letv, =x, —x* , w, =y, —y*, Then from (4.2) we set
” * (Wn +y*)
Va1 = (Vo +x)exp <(1 — (v +x7)) — " "
SV +x°)2 4+ (v +x*) +B
a
—_— ) =7, 4.3a
(vn+x*)+b) (4.32)
d(wa+y")
i = o+ esp (e )1 = {50 ) oy (@.3b)

Expanding (4.3) in Taylor series about (v,,w,,c*) = (0,0,0), and considering the
terms up to second order, we have

Vit 1 =Y1Vn +YaWn +Y12V0Wa Y11V Y22, 4.4)
Wit 1 =01V + oWy + 812wy + 811v2 + Soow? + 813¢™ v, + 813¢ v,
+ 823C*Wn + 5123C*Vnwn + 08 13C*Vﬁ + 5223C*W,21. 4.5)

where

M= A0 =1 <1_ (y (éx*2+x*+3)2+ (x*+b)2)>7

*

X
TSI () . —
Y2 = f(x",y%,0) éx*z—l—x*—i-ﬁ
. 14X 2x*2—|—CU* 2X*2y*—|—(}!1*y*
Y12 :fxy(x Y 70) = 2 2 2 - x*2 3
7+X*+B (X(U“—x*“—ﬁ) (X(7+X*+B)

ax®

(x+b)2 (22 4 x* +B)
zx*y* +ay* +y*x* 4x*2y* +(X2X*y* +4(Xx*2y*
A Hx B2 02(5 B
u 2x3y*2 4 2072y Y2t
GHB) T (B 2 x4 B
2x*2y*a 4 oax*y* o ax . a’x*
o(x+b)2 (2 4 x4 B2 (x+D)} 20 +D)*

T :fXX(X*vy*7O) =—1+

_l’_
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2x*2y* + ch*y* ax* X*

- 5 + )
(2 4ar B2 (4b)P 2

Y22 = fyy(X*ay*aO) =

x
2 +x+B)?)
>k * C
Br = gx(x",y",0) = e
B2 :gy(X*vy*?O) =1 -,
- C C
Bi2 = gun(x",y",0) = xj(z— ;)7
* * 1
Bl3 :gxc*(x ;Y 70) = Ea

Bll = gxx(x*ay*ao) =

cx* K
B I

. cd
BZZZgyy(X*vy 70) x* ( 1+

[323 = gyc*(X*vy*ao) = _17

2)

2 c
= * *’ *’0 - — 1—7 3
6123 8xyc (x y ) x*( X*)
Bll’j‘zgxxc*(x Y 70): 2d +ﬁ>

d
Bas = gy (x",37,0) = — (=143 )

Y2

Now we define an invertible matrix 7 =
- 1 -1 M—M

formation < v > =T < X ) . Writing
Wn Y,

v =V2(Xn +Y),wn = —(1+71)Xn + (M2 —11)Ys
Then the system (4.4) becomes

Xn+l i Y2 Xn fl(XmYn»C*)
T = T T
( Yoi ) < 8 O > ( Yy >+ ( 81(Xn, Yy,c*) )7
where

f1(X, Y, c") = <—Y12Y2(1 +v1) + v +v(l +Yl)2>X3 (4.6)

> , and use the trans-

+ <712Y2(T]2 —71) =y (1+7) + 2717 — Y2 (1 +71) (M2 —Yl)>XnYn

+ (71272(112 —1) +F1B M -7 )2> Y2,
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and
81(Xn, Yo, ") = < =3 (1+1) +3um +8x(1 +Yl)2>an (4.7)
+ <5113Y§ +8203(1+71)* — 812372 (1 +Y1))Xn2€*
+ <512Y2(T]2 1)+ 8173+ 8 M2 — 71)2> Y,
+ (52237% +83M2 =) + 8123 (M2 — ™ )> Ypc*
+ <312Y2 M2 —71) — 81212 (1+71) + 2811715 — 2852 (1 +v1) (2 —Yl)>XnYn
<25113Y2 +2823(1 +v1)(M2 —71) + 8123722 — 11)
— 01312 (1+7: ))XnYnC* + <513Y2 — (14 ))XnC*
(513Y2 +823(M2 — Yl))
Thus
(-3 )+ (2).
where
Fi (X, Yy, 07) = T}fnyzl <<_712'YZ(1 +7) % (1 +m)* ) X7

+ <712Y2(T]2 —v1) = Y22 (1 +71) + 27119 — 2y (1 4+71) (M2 —Yl)>XnYn

+ <Y12Y2(112 —7) s Y2 -7 )2> Y2

1
n2+1

+ (811393 + 8223 (1 +71)? —5123Y2(1+Yl))X30*

<<— Y2 (1+71) +31p3 +522(1+Y1)2>X3

<512Y2 M —71)+81% +8n M —7) )Yn2

+ ( 8203%3 +8023(M2 —11)? +812312(M2 — W1 )> Yic*
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+ <512Y2(T]2 —11) = 812 (14+71) +281173 — 282 (1+v1) (M2 — Y1)>XnYn
+ <251 137% +283(1+v1)M2—71) + 0123722 —™1)

—d13m2(1+ Y1)>XnYnc* + (313Y2 —dx3(1 +Y1))ch*

+ <513Y2 +0x3(M2 — 'Yl)) YnC*>> .

and

1+
G1(Xy,Yy,c") = 1+:](1 <<—Y1272(1+Yl)+71ﬂ%>x3

+ <leYz(T]2 Y1) —Yi2v2(14+v1) + 2YIIY%>XnYn
+ <leYz(n2 -11) +YUY§> Yr12>

(( S12v2(1+71) + 81175 + 8 (1 +Yl)2)Xf

4+ 811318 +8203(1+11)? _812372(1-1-71))anc*

+ 812Y2 T'|2*Y1 +511'Y2 +822 nZ*’Yl) )Yn2

+ (S22 (M2—m1) 51272(1+Y1)+2511Y%—2522(1+Y1)(T12—71)>XnYn

T]
+ <5223YZ+5223 M —71)* + 8131 (n2 —Yl)>Yn20*

+ (281131 + 28223 (1 +711) (M2 —71) + 812372 (M2 — 1)

-9 23Y2(1+Y1)>X Yo"+ <513Y2—523(1+Y1)>Xn0*

(513Y2+523 112—71)> >>

Hereafter we determine the center manifold W,(0,0) of (4.8) about (0,0) in a small
neighborhood of ¢*. By center manifold theorem, there exists a center manifold
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M.(0,0) that can be represented as follows:

We(0,0) = {(Xo, Y) 1 Yo = 0(Xa, ") = a1X;] +arXuc” +a3¢™ +O((| Xu | + | "))},

4.9
where O((] X, | + | ¢* |)?) is a function with order at least three in their variables
(X:,s™), Moreover, the center manifold must satisfy

¢<_Xn +h (qu)(XmC*))?C*)?c*) —M20(Xn; ") = G1 (X, (X, "), ") = 0.
(4.10)
By equating (4.10), we obtain

14+
ar= 7 ;l< Y1272(1 +Y1)+Y11Y%+722(1+Y1)2)
-MN3
1
+lnz<_SIZ'YZ(I+'Yl)+8]17%+622(1+71)2>,
-1
a) = 1+1] (51372[323(1+0t1)> az = 0.

Therefore, we consider the map which is the map (4.8) restricted to the center mani-
fold M.(0,0)

f=Xpi1 = Xy +c1Xnc" +e2X2 +e3X2c +eaX, (4.11)
where
1
¢ = “Ttm (513Y2 —Ox3(1 +Y1)>
_M—" 2
2= — v (14+71) + 7117 + v (1+71)
+MN2
- e 5 3 (1 2
ﬂ2+1( Y (14+71) +811%% + 82 (14+71) >,
3= ! (513Y2—523( +Y1)) [ﬂ N <71272(1”|2—Yl) Y22 (1+v1) + 271173
1+T] 1412
1
—2Y22(1+Yl)(112—Y1)>—1+n(51272(112—71) 512Y2(1+Y1)+2511Y§

1
—2Y22(1+71)(T]2—Yl))] —l_I_n<5113Y2+5223 1+7)? —5123Y2(1+71)>

1+v 2
— 1 1
(i (e s 0y

1
T

(slma+vl>+6m%+szz<1+vl>2))
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X (51372 +323(M2 — Yl)> )

1+
c4 = (1_1?2 (—leYz(l—i—Yl)—l-YnY%‘f‘Yﬂ(l +Y1)2> +

<—512Y2(1 +71)
p

1-13

+8117% +8x(1 +Y1)2>> [m (leYz(ﬂz —71) —Yi2Y2(1+v1) +2711Y§>

1
—— (9 —v)—9 1 28
1+n2< (M2 —v1) =81 (14+71) + 281173

—2322(1+Y1)(T]2—Y1)>]-

In order for the map (4.11) to undergo a period-doubling bifurcation, we require that
the following discriminatory quantities are non-zero [13]:

*f  19f 9*f
o] = (8)(,,ac"+2f)c"a2)(,1> 0,07 0,
and

1°f  10°f,
Gy = (68Xn3+(28X,%) ) |(0,0)7 O-

After calculating we get
O =c1+c3, O = C4+C%.
From the above analysis we have the following theorem.

Theorem 4. If 6, # 0, and G| # 0, then the system (1.7a)-(1.7b) experiences a
period-doubling bifurcation about the unique positive fixed point E,(x*,y"*) when c*
varies in a small neighborhood of 0(0,0). Moreover, if G, > 0 ( resp 62 <0 ), then
the period 2 points that bifurcate from E,(x*,y*) are stable (unstable).

5. CHAOS CONTROL

In this paper, we apply the state feedback method [3] to stabilize the chaotic orbits
at an unstable fixed point of system. Towards this we introduce a feedback control
force P, such that

Yn a
Xpgl = X €X 1—x,)— — >, 5.1
" p(( ) I2+x,+B X tb

~ dyn « *
Yn+1 = Yn€Xp <C<1 - xy ))) _,Ul(xn_x )_:u2<yn_y ) (5.2)

n

The control force P,
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where u, up are feedback gains and ¢ is the nominal value for ¢ which belongs to
some chaotic regions. The Jacobian matrix of (5.1)-(5.2) at E» is

* * (%‘H) a - x*
ey ={ Y <1 - <y (e +Br <X*+b>2>> b (5.3)
7 M l—Cc—m
The corresponding characteristic equation of (5.3) is

R e e RO
(= (-t wte) ()

P (6 ) 0
T ropla “)=0
a.xz"_.x +B d

Let A, , A, are the eigenvalues of the characteristic Eq.(5.4) then sum and the product
of their roots are given by

R\ —z_x*(1_(* S >—5— > 5.5)
1 2 = y (éx*z_'_x*_'_ﬁ)z (x*+b)2 M2 ), .

e (- g ) -+

x* c
() »
&xz‘i_x +B d

Lemma 1. The system (5.1)-(5.2) is asymptotically stable if all the eigenvalues of
the characteristic Eq. (5.4) have modulus less than 1.

Proof. The marginal stability lines can be obtained from the conditions A; = +1,
A1A, = 1. For the conditions AjA; = 1, Eq.(5.6) gives

L x* +<1 *<l (x* 2x+ o N a )))
—_— —x"1-
1 éx*2 +x*+BM1 d (x*2+OCX*+(Xl3)2 ()C* +b>2 H2

B {I‘X*Q‘ @(ﬁzfé;iamﬁ <x*+a—b>2>>} <l‘€>

x‘c
d(Ex2+x: 4+ )’
The Eq. (5.7) expresses the first condition for marginal stability. For A; = 1, the Eq.
(5.5) yields

(5.7)

L x* . (1 (x* 2x+ o 4@ >
x| 1= [ =
2 éx*z +x* 4 B'ul d (x2+ox*+0of)?  (x*+Db)? H
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oy x'e A[l *<1 <X* 2x+ 0 L a >>]
=c —c|l—x"({1—-|(— )
d(2x2 x4+ B) d (x24+ox*+af)?  (x*4b)?

similarly for A; = —1, it gives

L x* +(2 *<1 (x* 2x+a 44 >>
— —x(1-(—=
YTt B d (2o +ap)? | (x +b)?

= |12 (1 (7 e et ) (2) +2e

N x*c
d(éx*2 +x*+B)

The lines L1, Ly, L3 give the conditions for the eigenvalues to have absolute value less
than 1. The triangular region bounded by these lines accommodates stable eigenval-
ues. ]

6. NUMERICAL SIMULATIONS

Let (o, B,a,b,d) = (0.19,1,0.0001,0.75,0.3) [2] and initial conditions (xo,yo) =
(0.5,0.5) . The coexistent fixed point E»(0.4,1.35) is locally asymptotically stable if
c takes higher values than 3, which means that all the orbits attract towards the posit-
ive fixed point E>(0.4,1.35). By decreasing the value of ¢ from ¢ = 0.3 to ¢ = 0.25,
the system (1.7a)-(1.7b) loses its stability. In particular, we observe the appearance
of a closed invariant curve which indicate that the discrete-time model (1.7a)-(1.7b)
experiences Neimark-Sacker bifurcation about E; = (0.4, 1.35). To see this, we com-
pute the value of N defined in (3.7), that is N = —0.0081364312 < 0. Hence, the
model (1.7a)-(1.7b) admits supercritical Neimark-Sacker bifurcation if ¢ < 0.3 and
meanwhile, stable curve appears, see Fig. 2.

Additional simulations are plotted to show the emergence of periodic doubling bi-
furcation for (o, B,a,b,d) = (0.19,1,0.0001,1,0.3) and initial conditions (0.5,0.5).
For these values E; undergo periodic doubling bifurcation, see Fig. 3.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIGURE 1. Phase portrait of the system (1.7) for c = 0.3.

FIGURE 2. Supercritical Neimark Sacker bifurcation of the system
(1.7) for ¢ = 0.25.

FIGURE 3. Period doubling bifurcation with respect to c.
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Now, we use the state feedback method described in Section. 5 to control the chaos
influenced by N-S bifurcation, the following set of parameter is taken : (o, 3,a,b,d) =
(0.19,1,0.0001,0.75,0.3) and ¢ = 0.25. Using lemma 1, the domain of stability of
the controlled system (5.1)-(5.2) is drawn in Fig.4.

FIGURE 4. Stability region of the controlled system (5.1)-(5.2).

Now, in order to stabilize the chaos in the system (1.7), we consider the feedback
controlling force P, = uj (x, — 0.4) + o (v, — 1.35) with feedback gains yu; = —0.2,
o = 0.35chosen from the triangular region from Fig.4. Accordingly to these values,
the system (1.3)-(1.4) converges to the fixed point (0.4,1.35) as shown in Fig.5. The
periodic solution is stabilized at time # = 150 and reproduce the efficiency of the
implemented method.

0 50 100 150 200 250 300 350 400
time (t)

FIGURE 5. The chaos is controlled after time t=250.

7. CONCLUDING REMARKS

In this paper, we explored the dynamical proprieties of a discrete-time two-
dimensional prey predator system. The model is formulated in terms of difference
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equations, by a discretization of a differential prey predator system involving a non-
linear harvesting effect on the prey and Holling functional response type IV. The
discretization is based on the higher-order implicit Runge Kutta method with a very
small step size to attain a discrete time version of its continuous counterpart. The
existence and local asymptotic stability of the fixed points are investigated. In order
to support the complexity of (1.7a)-(1.7b) the presence of Neimark-Sacker bifurc-
ation and periodic doubling bifurcation for the coexistence fixed point E,(x*,y*) is
proved analytically by using bifurcation theory and center manifold theory. In ad-
dition, the paper provides the method of state feedback and parameter perturbation
for the bifurcation control. Numerical simulations carried out to verify our theor-
etical analysis. In particular, we showed that the discrete model (1.7a)-(1.7b) loses
its asymptotic stability when the intrinsic growth rate of the predator cvaries in the
neighborhood of 3.1 and 4.1, and when the fixed point E; = (0.4, 1.35) loses stabil-
ity (all orbits are not attracted to this fixed point), a feedback chaos control strategy
is used to stabilize the chaos. Numerical simulations give evidence of the success-
ful implementation of the method. Using Evolutionary Game theory to explain how
phenotypic traits change over time will be a fascinating topic for our future work
[17]. We want to do an asymptotic study of the global stability of the present discrete
model. As a result, new methods for determining the global stability of fixed points,
such as the method of Lyapunov functions, are required [5].

ACKNOWLEDGMENT

We would like to thank anonymous referees very much for their valuable com-
ments and suggestions. Professor Saber Elaydi is thanked by K.M for his excellent
guidance during his Ph.D.

REFERENCES

[1] Adnan, S. Ahmad, A. Ullah, M. B. Riaz, A. Ali, A. Akgiil, and M. Partohaghighi, “Complex
dynamics of multi strain tb model under nonlocal and nonsingular fractal fractional operator,”
Results in Physics, vol. 30, p. 104823, 2021, doi: 10.1016/j.rinp.2021.104823.

[2] M. Bilal Ajaz, U. Saeed, Q. Din, I. Ali, and M. Israr Siddiqui, “Bifurcation analysis and chaos
control in discrete-time modified Leslie-Gower prey harvesting model,” Adv. Difference Equ., vol.
2020, p. 24, 2020, id/No 45, doi: 10.1186/s13662-020-2498-1.

[3] Q. Din, “Complexity and chaos control in a discrete-time prey-predator model,” Communic-
ations in Nonlinear Science and Numerical Simulation, vol. 49, pp. 113-134, 2017, doi:
10.1016/j.cnsns.2017.01.025.

[4] Q. Din, “Controlling chaos in a discrete time prey-predator model with allee effects,” Int. J. Dy-
nam. Control, vol. 6, pp. 858-872, 2018, doi: 10.1007/s40435-017-0347-1.

[5] S. Elaydi, “Global dynamics of discrete dynamical systems and difference equations,” in Differ-
ence equations, discrete dynamical systems and applications, ICDEA 23, Timisoara, Romania,
July 24-28, 2017. Proceedings of the 23rd international conference on difference equations and
applications. Cham: Springer, 2019, pp. 51-81, doi: 10.1007/978-3-030-20016-9_3.

[6] S. N. Elaydi, An introduction to difference equations, 3rd ed., ser. Undergraduate Texts Math.
New York, NY: Springer, 2005.


http://dx.doi.org/10.1016/j.rinp.2021.104823
http://dx.doi.org/10.1186/s13662-020-2498-1
http://dx.doi.org/10.1016/j.cnsns.2017.01.025
http://dx.doi.org/10.1007/s40435-017-0347-1
http://dx.doi.org/10.1007/978-3-030-20016-9_3

DYNAMIC ANALYSIS AND CHAOS CONTROL FOR A DISCRETE PREDATOR-PREY SYSTEM 941

[7] S.N. Elaydi, Discrete chaos. With applications in science and engineering, 2nd ed. Boca Raton,
FL: Chapman & Hall/CRC, 2008.

[8] L. Fei, X. Chen, and B. Han, “Bifurcation analysis and hybrid control of a discrete-time
predator-prey model,” J. Difference Equ. Appl., vol. 27, no. 1, pp. 102-117, 2021, doi:
10.1080/10236198.2021.1876038.

9] O. A. Giimiis and M. Feckan, “Stability, Neimark-Sacker bifurcation and chaos control for a
prey-predator system with harvesting effect on predator,” Miskolc Math. Notes, vol. 22, no. 2, pp.
663-679, 2021, doi: 10.18514/MMN.2021.3450.

[10] Z. Jingwen, W. Ranchao, and C. Mengxin, “Bifurcation analysis in a predator—prey model with
strong allee effect,” Zeitschrift fiir Naturforschung A, vol. 76, no. 12, pp. 1091-1105, 2021, doi:
10.1515/zna-2021-0178.

[11] A. Q. Khan and T. Khalique, “Bifurcations and chaos control in a discrete-time biological model,”
Int. J. Biomath., vol. 13, no. 4, p. 31, 2020, id/No 2050022, doi: 10.1142/S1793524520500229.

[12] A. Q. Khan, J. Ma, and D. Xiao, “Global dynamics and bifurcation analysis of a host-
parasitoid model with strong Allee effect,” J. Biol. Dyn., vol. 11, no. 1, pp. 121-146, 2017, doi:
10.1080/17513758.2016.1254287.

[13] Y. A. Kuznetsov, Elements of applied bifurcation theory, 3rd ed., ser. Appl. Math. Sci.  New
York, NY: Springer, 2004, vol. 112.

[14] Z. Limin and Z. Lan, “Bifurcations and control in a discrete predator prey model with strong
allee effect,” International Journal of Bifurcation and Chaos, vol. 28, no. 5, 2018, doi:
10.1142/S0218127418500621.

[15] X. Liu, A. Shabir, U. Aman, S. Sayed, A. Ali, and Q. Haidong, “Bifurcations, stability analysis
and complex dynamics of caputo fractal-fractional cancer model,” Chaos, Solitons & Fractals,
vol. 159, p. 112113, 2022, doi: 10.1016/j.chaos.2022.112113.

[16] P. Majumdar, S. Debnath, B. Mondal, S. Sarkar, and U. Ghosh, “Complex dynamics of a prey-
predator interaction model with Holling type-II functional response incorporating the effect of
fear on prey and non-linear predator harvesting,” Rend. Circ. Mat. Palermo (2), vol. 72, no. 2, pp.
1017-1048, 2023, doi: 10.1007/s12215-021-00701-y.

[17] K. Mokni, S. Elaydi, M. CH-Chaoui, and A. Eladdadi, “Discrete evolutionary population mod-
els: a new approach,” Journal of Biological Dynamics, vol. 14, no. 1, pp. 454478, 2020, doi:
10.1080/17513758.2020.1772997.

[18] S. Pal, N. Pal, and J. Chattopadhyay, “Hunting cooperation in a discrete-time predator-prey sys-
tem,” Int. J. Bifurcation Chaos Appl. Sci. Eng., vol. 28, no. 7, p. 22, 2018, id/No 1850083, doi:
10.1142/S0218127418500839.

[19] S. H. Streipert, G. S. K. Wolkowicz, and M. Bohner, “Derivation and analysis of a discrete
predator-prey model,” Bull. Math. Biol., vol. 84, no. 7, p. 34, 2022, id/No 67, doi: 10.1007/s11538-
022-01016-4.

[20] J. Wang and M. Feckan, “Dynamics of a discrete nonlinear prey-predator model,” Int.
J. Bifurcation Chaos Appl. Sci. Eng., vol. 30, no. 4, p. 15, 2020, id/No 2050055, doi:
10.1142/S0218127420500558.

[21] L.-G. Yuan and Q.-G. Yang, “Bifurcation, invariant curve and hybrid control in a discrete-
time predator-prey system,” Appl. Math. Modelling, vol. 39, no. 8, pp. 2345-2362, 2015, doi:
10.1016/j.apm.2014.10.040.

[22] Z.Zhang, R. K. Upadhyay, and J. Datta, “Bifurcation analysis of a modified Leslie-Gower model
with Holling type-IV functional response and nonlinear prey harvesting,” Adv. Difference Equ.,
vol. 2018, p. 21, 2018, id/No 127, doi: 10.1186/s13662-018-1581-3.


http://dx.doi.org/10.1080/10236198.2021.1876038
http://dx.doi.org/10.18514/MMN.2021.3450
http://dx.doi.org/10.1515/zna-2021-0178
http://dx.doi.org/10.1142/S1793524520500229
http://dx.doi.org/10.1080/17513758.2016.1254287
http://dx.doi.org/10.1142/S0218127418500621
http://dx.doi.org/10.1016/j.chaos.2022.112113
http://dx.doi.org/10.1007/s12215-021-00701-y
http://dx.doi.org/10.1080/17513758.2020.1772997
http://dx.doi.org/10.1142/S0218127418500839
http://dx.doi.org/10.1007/s11538-022-01016-4
http://dx.doi.org/10.1007/s11538-022-01016-4
http://dx.doi.org/10.1142/S0218127420500558
http://dx.doi.org/10.1016/j.apm.2014.10.040
http://dx.doi.org/10.1186/s13662-018-1581-3

942 K. MOKNI AND M. CH-CHAOUI

Authors’ addresses

Karima Mokni

Faculte Polydisciplinaire, Sultan moulay Slimane University, MRI Laboratory, BP: 145 Khouribga
principale, 25000, Morocco

E-mail address: moknirima@gmail.com

Mohamed Ch-Chaoui

(Corresponding author) Faculte Polydisciplinaire, Sultan moulay Slimane University, MRI Labor-
atory, BP: 145 Khouribga principale, 25000, Kingdom of Morocco.

E-mail address: m.chchaoui@usms.ma



	1. Introduction
	2. Existence of the fixed points and their stability
	3. Neimark Sacker bifurcation
	4. Period Doubling Bifurcation
	5. Chaos Control
	6. Numerical simulations
	7. Concluding remarks
	Acknowledgment
	References

