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ON OPERATORS WHOSE CORE–EP INVERSE IS n-POTENT
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Abstract. The main contribution of this paper is to establish a number of equivalent conditions
for the core–EP inverse of an operator, to be n-potent. We prove that the core–EP inverse of an
operator is n-potent if and only if the Drazin inverse of the same operator is n-potent. Thus, we
present new characterizations for n-potency of the Drazin inverse. Consequently, we get many
characterizations for the core–EP inverse (and Drazin inverse) to be an idempotent. We observe
that the core–EP inverse of an operator is idempotent if and only it is the orthogonal projector.
Furthermore, we show that the n-potency of an operator implies n-potency of its core–EP inverse
and develop the condition for the converse to hold. Applying these results, we obtain necessary
and sufficient conditions for the n-potency and idempotency of the core inverse. Notice that the
core inverse of an operator is n-potent (or idempotent) if and only if the given operator is n-potent
(idempotent).
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1. INTRODUCTION

Let X and Y be arbitrary Hilbert spaces, and let B(X ,Y ) be the set of all bounded
linear operators from X to Y . Especially, B(X) = B(X ,X). Denote by A∗, R(A) and
N(A) the adjoint, range and null space of A ∈ B(X ,Y ), respectively.
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For n≥ 2, an operator A∈B(X) is called n-potent if An = A. In the case that n= 2,
an operator A satisfying A2 = A is an idempotent (or projector). If an idempotent A
satisfies A = A∗, we say that A is the orthogonal projector. Some interesting results
about n-potent elements of rings can be found in [12].

It is well known that B ∈ B(Y,X) is the Moore–Penrose inverse of A ∈ B(X ,Y ) if

ABA = A, BAB = B, (AB)∗ = AB, (BA)∗ = BA.

The Moore–Penrose inverse of A is unique (if it exists) and denoted by A† [13, 14].
Recall that A† exists if and only if R(A) is closed in Y . For A ∈ B(X ,Y ), we set
A{1,3}= {B ∈ B(Y,X) : ABA = A and (AB)∗ = AB}.

The Drazin inverse of A ∈ B(X) is an operator B ∈ B(X) for which

AB = BA, BAB = B and Ak+1B = Ak,

where k is the index of A (denoted by ind(A)), i.e. the smallest non-negative integer k
such that the previous three equations are satisfied. The Drazin inverse of A is unique
(if it exists) and denoted by AD [14]. In the case that ind(A) = 1, the Drazin inverse
becomes the group inverse A# of A. We use B(X)D and B(X)# to denote the sets of
all Drazin invertible and group invertible operators in B(X), respectively.

Firstly, the core–EP inverse was presented in [17] for a square matrix and then it
was generalized in [15,16] for Hilbert space operators. If A ∈ B(X)D and k = ind(A),
there exists the unique core–EP inverse B ∈ B(X) of A (denoted by AD⃝) satisfying
[15]:

BAB = B and R(B) = R(B∗) = R(Ak).

When ind(A) = 1, the core–EP inverse of A reduces to the core inverse A #⃝ of A [1].
The core and core–EP inverses have attracted attentions of many authors [3, 4, 8, 10,
23]. In particular, various expressions of core-EP inverse were given in [5, 11, 20],
iterative method for computing core-EP inverse was proved in [18]; limit representa-
tions for core-EP inverse in [21]; continuity of core-EP inverse was presented in [7].
Some generalizations of the core-EP inverse were considered for tensors in [19].

Inspired by some matrix equations occurring in physics and involving assumption
that the matrices in them have an an idempotent Moore-Penrose inverse, the class
of square matrices which have idempotent Moore-Penrose inverse was investigated
in [2]. Beside of characterizations for an idempotent Moore-Penrose inverse, the
authors studied the relation between idempotency of a given matrix and its Moore-
Penrose inverse. These results were extended to elements of rings in [22].

The aim of this paper is to consider the n-potency of the core–EP inverse of an
operator. Precisely, we prove many equivalent conditions for the core–EP inverse
of a Drazin invertible operator A, to be n-potent. We observe that AD⃝ is n-potent if
and only if AD is n-potent. As a consequence, we obtain a set of characterizations
for AD⃝ to be an idempotent. Remark that we present new characterizations for n-
potency and idempotency of the Drazin inverse. Notice that AD⃝ is an idempotent
if and only AD⃝ is the orthogonal projector. Also, we verify that the n-potency of A
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implies n-potency of its core–EP inverse and consider a condition for the converse
to be satisfied. Applying these results, we get necessary and sufficient conditions for
the n-potency and idempotency of the core inverse. Remark that A #⃝ is n-potent (or
idempotent) if and only if A is n-potent (idempotent).

This is the content of this paper. In Section 2, we present a number of charac-
terizations for the n-potency and idempotency of the core–EP inverse as well as the
relation between the n-potency of a given operator and its core–EP inverse. Section 3
contains equivalent conditions for the n-potency and idempotency of the core inverse.

2. MAIN RESULTS

To develop a list of equivalent conditions for the core–EP inverse to be n-potent,
we firstly present one auxiliary result related to the expressions for the power of the
core–EP inverse.

Lemma 1. If A ∈ B(X)D and k = ind(A), then

(AD⃝)n = (AD)nAk(Ak)† = (AD)nAk(Ak)(1,3),

for any n ≥ 1 and (Ak)(1,3) ∈ (Ak){1,3}.

Proof. It is well known, by [6, Theorem 2.3], that AD⃝ = ADAk(Ak)†. Assume that
(AD⃝)n = (AD)nAk(Ak)†, for n ≥ 1. Then

(AD⃝)n+1 = (AD⃝)nAD⃝ = (AD)n(Ak(Ak)†Ak)AD(Ak)† = (AD)n+1Ak(Ak)†.

The rest is clear. □

In the following theorem, for a Drazin invertible operator A, notice that AD⃝ is
n-potent if and only if AD is n-potent.

Theorem 1. If A ∈ B(X)D, k = ind(A) and n ≥ 2, then the following statements
are equivalent:

(i) AD⃝ is n-potent;
(ii) (AD⃝)n−1Ak = Ak;

(iii) Ak+n−1 = Ak;
(iv) ADAk = Ak+n−2;
(v) Ak(Ak)(1,3) = (AD⃝)n−1, for (Ak)(1,3) ∈ (Ak){1,3};

(v’) Ak(Ak)† = (AD⃝)n−1;
(vi) AD(AD⃝)n−1 = AD⃝;

(vii) AAD⃝ = (AD⃝)n−1;
(viii) (AD⃝)n−1 is orthogonal projector;

(ix) (AD⃝)n−1 is an idempotent;
(x) ADA = (AD)n−1;

(xi) AD is n-potent;
(xii) (Ak)∗ = (Ak)∗(AD⃝)n−1;
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(xiii) (AD⃝)m = (AD⃝)m+n−1, for some/any m ≥ 1;
(xiv) (AD)m = (AD)m+n−1, for some/any m ≥ 1.

Proof. (i) ⇒ (ii): By the hypothesis (AD⃝)n = AD⃝, we obtain

Ak = AD⃝Ak+1 = (AD⃝)nAk+1 = (AD⃝)n−1Ak.

(ii) ⇒ (iii): Using (AD⃝)n−1Ak = Ak, we get

Ak+n−1 = AkAn−1 = (AD⃝)n−1Ak+n−1 = (AD⃝)n−2Ak+n−2 = · · ·= AD⃝Ak+1 = Ak.

(iii) ⇒ (iv): Multiplying the equality Ak+n−1 = Ak by AD from the left hand side,
notice that ADAk = ADAk+n−1 = Ak+n−2.

(iv) ⇒ (v): The hypothesis ADAk = Ak+n−2 and Lemma 1 imply

Ak(Ak)(1,3) = (AD)n−2Ak+n−2(Ak)(1,3) = (AD)n−1Ak(Ak)(1,3) = (AD⃝)n−1,

for (Ak)(1,3) ∈ (Ak){1,3}.
(v) ⇒ (vi): If Ak(Ak)(1,3) = (AD⃝)n−1, for (Ak)(1,3) ∈ (Ak){1,3}, then AD(AD⃝)n−1 =

ADAk(Ak)(1,3) = AD⃝.
(vi) ⇒ (vii): Applying AD(AD⃝)n−1 = AD⃝ and Lemma 1, we have

AAD⃝ = AAD(AD⃝)n−1 = AAD(AD)n−1Ak(Ak)(1,3) = (AD)n−1Ak(Ak)(1,3) = (AD⃝)n−1,

for (Ak)(1,3) ∈ (Ak){1,3}.
(vii) ⇒ (i): Multiplying AAD⃝ = (AD⃝)n−1 by AD⃝ from the left hand side, we see

that AD⃝ = (AD⃝)n.
(v) ⇒ (viii) ⇒ (ix): These implications are evident.
(ix) ⇒ (vii): Because (AD⃝)n−1 is orthogonal projector, then

(AD⃝)n = AD⃝(AD⃝)n−1 = AD⃝(AD⃝)2n−2 = (AD⃝)2n−1.

Therefore,

AAD⃝ = An(AD⃝)n = An(AD⃝)2n−1 = AAD⃝(AD⃝)n−1 = (AD⃝)n−1.

(iii) ⇒ (x): Since Ak+n−1 = Ak, then

ADA = (AD)k+n−1Ak+n−1 = (AD)k+n−1Ak = (AD)n−1.

(x) ⇒ (xi): The condition ADA = (AD)n−1 yields AD = (ADA)AD = (AD)n.
(xi) ⇒ (iii): From AD = (AD)n, we get

Ak+n−1 = Ak+nAD = Ak+n(AD)n = Ak+1AD = Ak.

(v’) ⇒ (xii): Multiplying Ak(Ak)† = (AD⃝)n−1 by (Ak)∗ from the left hand side, we
see that (Ak)∗ = (Ak)∗(AD⃝)n−1.

(xii) ⇒ (v’): The assumption (Ak)∗ = (Ak)∗(AD⃝)n−1 and Lemma 1 imply

Ak(Ak)† = ((Ak)†)∗(Ak)∗ = ((Ak)†)∗(Ak)∗(AD⃝)n−1

= (Ak(Ak)†Ak)(AD)n−1(Ak)† = (AD)n−1Ak(Ak)† = (AD⃝)n−1.
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(i) ⇒ (xiii): It is clear.
(xiii) ⇒ (vii): Assume that (AD⃝)m = (AD⃝)m+n−1, for m ≥ 1. Then

AAD⃝ = Am(AD⃝)m = Am(AD⃝)m+n−1 = AAD⃝(AD⃝)n−1 = (AD⃝)n−1.

(x) ⇒ (xiv): This implication is obvious.
(xiv) ⇒ (x): Applying (AD)m = (AD)m+n−1, for m ≥ 1, we have

AD = Am−1(AD)m = Am−1(AD)m+n−1 = (AD)n.

□

By Theorem 1, we can obtain more characterizations for AD⃝ to be n-potent oper-
ator. Recall that B ∈ B(Y,X)\{0} is an outer inverse of A ∈ B(X ,Y ) if BAB = B is
satisfied.

Corollary 1. If A ∈ B(X)D, k = ind(A) and n ≥ 2, then the following statements
are equivalent:

(i) AD⃝ is n-potent;
(ii) (AD⃝)n is an outer inverse of A;

(iii) AD(AD⃝)n−1 is an outer inverse of A;
(iv) (AD)n is an outer inverse of A;
(v) ADA is an outer inverse of An−1.

Proof. (i) ⇒ (ii): Since (AD⃝)n = AD⃝, we conclude that

(AD⃝)n = AD⃝ = AD⃝AAD⃝ = (AD⃝)nA(AD⃝)n,

i.e. (AD⃝)n is an outer inverse of A.
(ii) ⇒ (i): Notice that (AD⃝)n = (AD⃝)nA(AD⃝)n = (AD⃝)2n−1. By Theorem 1(xiii),

for m = n, we deduce that AD⃝ is n-potent.
(i) ⇒ (iii): Using Theorem 1(vi), AD(AD⃝)n−1 = AD⃝ and so AD(AD⃝)n−1 is an outer

inverse of A.
(iii) ⇒ (i): Firstly, by Lemma 1, we can check that AAD(AD⃝)m = (AD⃝)m, for

m ≥ 1. Now, from AD(AD⃝)n−1 = AD(AD⃝)n−1AAD(AD⃝)n−1 = AD(AD⃝)2n−2, we get
AAD(AD⃝)n−1 = AAD(AD⃝)2n−2, that is, (AD⃝)n−1 = (AD⃝)2n−2. The rest is clear by
Theorem 1(xiii).

(i) ⇒ (iv): Applying Theorem 1(x), we see that (AD)n = AD is an outer inverse of
A.

(iv) ⇒ (i): Because (AD)n = (AD)nA(AD)n = (AD)2n−1, by Theorem 1(xiii), we
conclude that AD⃝ is n-potent.

(i) ⇒ (v): According to Theorem 1(ix), ADA = (AD)n−1 = (An−1)D is an outer
inverse of An−1.

(v) ⇒ (i): Suppose that ADA is an outer inverse of An−1. Then ADA=ADAAn−1ADA
= ADAn gives

(AD)n−1 = (ADA)(AD)n−1 = ADAn(AD)n−1 = (AD)nAn = ADA.
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By Theorem 1(ix), AD⃝ is n-potent. □

In the case that n = 2 in Theorem 1 and Corollary 1, we present necessary and
sufficient conditions for AD⃝ to be an idempotent. Remark that AD⃝ is an idempotent if
and only if AD⃝ is the orthogonal projector.

Corollary 2. If A ∈ B(X)D and k = ind(A), then the following statements are
equivalent:

(i) AD⃝ is an idempotent;
(ii) AD⃝Ak = Ak;

(iii) Ak+1 = Ak;
(iv) ADAk = Ak;
(v) Ak(Ak)(1,3) = AD⃝, for (Ak)(1,3) ∈ (Ak){1,3};

(v’) Ak(Ak)† = AD⃝;
(vi) ADAD⃝ = AD⃝;

(vii) AAD⃝ = AD⃝;
(viii) AD⃝ is orthogonal projector;

(ix) ADA = AD;
(x) AD is an idempotent;

(xi) (Ak)∗ = (Ak)∗AD⃝;
(xii) (AD⃝)m = (AD⃝)m+1, for some/any m ≥ 1;

(xiii) (AD)m = (AD)m+1, for some/any m ≥ 1;
(xiv) (AD⃝)2 is an outer inverse of A;
(xv) ADAD⃝ is an outer inverse of A;

(xvi) (AD)2 is an outer inverse of A;
(xvii) ADA is an outer inverse of A.

Now, we consider the relation between n-potency of A and AD⃝. We firstly show
that if A is n-potent, then AD⃝ is n-potent.

Lemma 2. Let n ≥ 2. If A ∈ B(X)D is n-potent, then AD⃝ is n-potent.

Proof. Using An =A, we obtain AD⃝ =A(AD⃝)2 =An(AD⃝)n+1 =A(AD⃝)n+1 =(AD⃝)n.
□

In the following example, we remark that the converse of Lemma 2 does not hold
in general.

Example 1. Let

A =

 1 0 2
0 0 3
0 0 0


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on X = C2. Because

AD⃝ =

 1 0 0
0 0 0
0 0 0

 and An =

 1 0 2
0 0 0
0 0 0

 , n ≥ 2,

we deduce that (AD⃝)n = AD⃝ and An ̸= A, for n ≥ 2. Hence, AD⃝ is n-potent and A is
not n-potent, for n ≥ 2.

We establish an additional condition under which n-potency of AD⃝ implies n-
potency of A. Also, we give more characterizations of n-potency of A which involve
the core–EP inverse of A.

Theorem 2. If A∈B(X)D and n≥ 2, then the following statements are equivalent:

(i) A is n-potent;
(ii) AD⃝ is n-potent and (I −An−1)A(I −AAD⃝) = 0;

(iii) AD⃝An = AD⃝A and A−AAD⃝A is n-potent;
(iv) AD⃝An = AD⃝A and (I −AAD⃝)A(I −An−1) = 0;
(v) A2AD⃝ is n-potent and (I −An−1)A(I −AAD⃝) = 0.

Proof. (i) ⇒ (ii): By Lemma 2, A is n-potent implies that AD⃝ is n-potent. The rest
is evident by An = A.

(ii) ⇒ (i): According to [15, Corollary 2.2], for k = ind(A), the operators A and
AD⃝ can be represented with respect to the orthogonal sum X = R(Ak)⊕N((Ak)∗) as:

A =

[
A1 A2
0 A3

]
and AD⃝ =

[
A−1

1 0
0 0

]
, (2.1)

where A1 ∈ B(R(Ak)) is invertible and A3 ∈ B[N((Ak)∗)] is nilpotent. We observe
that

An =

[
An

1 U
0 An

3

]
and I −AAD⃝ =

[
0 0
0 I

]
,

where U =
n−1
∑
j=0

An−1− j
1 A2A j

3. Since AD⃝ is n-potent, from

[
A−1

1 0
0 0

]
= AD⃝ = (AD⃝)n =

[
A−n

1 0
0 0

]
,

notice that An−1
1 = I. Further, (I −An−1)A(I −AAD⃝) = 0 is equivalent to[

0 A2
0 A3

]
= A(I −AAD⃝) = An(I −AAD⃝) =

[
0 U
0 An

3

]
,

which gives A2 =U and A3 = An
3. Thus, A = An.
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(i) ⇔ (iii): Using the same representations of A and AD⃝ as in (2.1), we have that A
is n-potent if and only if An−1

1 = I, A2 =U and A3 = An
3. We can see that[

An−1
1 A−1

1 U
0 0

]
= AD⃝An = AD⃝A =

[
I A−1

1 A2
0 0

]
is equivalent to An−1

1 = I and A2 =U . Since

A−AAD⃝A = (I −AAD⃝)A =

[
0 0
0 A3

]
,

then A−AAD⃝A is n-potent if and only if A3 is n-potent.
(i) ⇔ (iv): This equivalence can be proved as (i) ⇔ (iii) when we note that

(I −AAD⃝)A(I −An−1) = 0 is equivalent to[
0 0
0 A3

]
= (I −AAD⃝)A = (I −AAD⃝)An =

[
0 0
0 An

3

]
,

that is A3 = An
3.

(i) ⇔ (v): Applying (2.1), A2AD⃝ =

[
A1 0
0 0

]
is n-potent if and only if An

1 = A1,

i.e. An−1
1 = I. The rest follows as in the part (ii) ⇒ (i) of this proof. □

For n = 2 in Theorem 2, we get the next result.

Corollary 3. If A ∈ B(X)D, then the following statements are equivalent:
(i) A is an idempotent;

(ii) AD⃝ is an idempotent and (I −A)A(I −AAD⃝) = 0;
(iii) AD⃝A2 = AD⃝A and A−AAD⃝A is an idempotent;
(iv) AD⃝A2 = AD⃝A and (I −AAD⃝)A(I −A) = 0;
(v) A2AD⃝ is an idempotent and (I −A)A(I −AAD⃝) = 0.

We also study equivalent conditions under which AD⃝ = Ak+1.

Theorem 3. If A ∈ B(X)D and k = ind(A), then the following statements are equi-
valent:

(i) AD⃝ = Ak+1;
(ii) Ak(Ak)† = Ak+2;

(ii’) Ak(Ak)(1,3) = Ak+2, for (Ak)(1,3) ∈ (Ak){1,3};
(iii) Ak+2 is orthogonal projector;
(iv) Ak = A2k+2 and (Ak+2)∗ = Ak+2;
(v) ADAk = A2k+1 and (Ak+2)∗ = Ak+2.

Proof. (i) ⇒ (ii): The equalities AD⃝ = Ak+1 and AD⃝ = ADAk(Ak)† yield

Ak+2 = AAk+1 = AAD⃝ = (AADAk)(Ak)† = Ak(Ak)†.

(ii) ⇒ (iii): It is clear.
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(iii) ⇒ (iv): Because Ak+2 is orthogonal projector, (Ak+2)∗ = Ak+2 and Ak+2 =
A2k+4 which gives Ak = (AD)2Ak+2 = (AD)2A2k+4 = A2k+2.

(iv) ⇒ (v): Multiplying Ak = A2k+2 by AD from the left hand side, we obtain
ADAk = A2k+1.

(v) ⇒ (i): The assumptions ADAk = A2k+1 and (Ak+2)∗ = Ak+2 imply

AD⃝ = (ADAk)(Ak)† = A2k+1(Ak)† = ADAk+2Ak(Ak)† = AD(Ak+2)∗Ak(Ak)†

= AD(Ak+2)∗ = ADAk+2 = Ak+1.

□

The equality AD⃝ = (Ak)† is studied in the next result.

Theorem 4. If A ∈ B(X)D and k = ind(A), then the following statements are equi-
valent:

(i) AD⃝ = (Ak)†;
(ii) ADAk = (Ak)†Ak;

(iii) Ak = (Ak)†Ak+1;
(iv) (Ak)∗ = A∗(Ak)†Ak;
(v) ADAk(Ak)∗ = (Ak)∗;

(vi) Ak(AkAD)∗ = Ak.

Proof. (i) ⇒ (ii): Because (Ak)† = AD⃝ = ADAk(Ak)†, we have

(Ak)†Ak = ADAk(Ak)†Ak = ADAk.

(ii) ⇒ (iii): The hypothesis ADAk = (Ak)†Ak gives Ak = (ADAk)A = (Ak)†Ak+1.
(iii) ⇒ (i): From Ak = (Ak)†Ak+1, we get

AD⃝ = ADAk(Ak)† = AkAD(Ak)† = (Ak)†(Ak+1AD)(Ak)† = (Ak)†Ak(Ak)† = (Ak)†.

(iii) ⇔ (iv) and (v) ⇔ (vi): These equivalences follow by properties of the adjoint
operator.

(ii) ⇒ (v): The condition ADAk = (Ak)†Ak yield ADAk(Ak)∗ = (Ak)†Ak(Ak)∗ =
(Ak)∗.

(v) ⇒ (ii): Multiplying ADAk(Ak)∗ = (Ak)∗ by (A†)∗ from the right hand side, we
obtain ADAk = (Ak)†Ak. □

We can consider the equality AD⃝ = (Ak)∗ too.

Theorem 5. If A ∈ B(X)D and k = ind(A), then the following statements are equi-
valent:

(i) AD⃝ = (Ak)∗;
(ii) ADAk = (Ak)∗Ak;

(iii) AD[(Ak)†]∗ = (Ak)†Ak.
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Proof. (i) ⇒ (ii)–(iii): Since (Ak)∗ = AD⃝ = ADAk(Ak)†, we deduce that (Ak)∗Ak =
ADAk and

(Ak)†Ak = (Ak)∗[(Ak)†]∗ = ADAk(Ak)†[(Ak)†]∗ = AD[(Ak)†]∗.

(ii) ⇒ (i): Multiplying ADAk = (Ak)∗Ak by (Ak)† from the right hand side, we get
AD⃝ = (Ak)∗.

(iii) ⇒ (i): The assumption AD[(Ak)†]∗ = (Ak)†Ak implies

AD⃝ = ADAk(Ak)† = AD[(Ak)†]∗(Ak)∗ = (Ak)†Ak(Ak)∗ = (Ak)∗.

□

3. APPLICATION TO THE CORE INVERSE

Applying the results of Section 2, we obtain many characterizations for n-potency
of the core inverse.

When ind(A) = 1 in Lemma 1, we have the next representations for the power of
the core inverse.

Lemma 3. If A ∈ B(X)#, then

(A #⃝)n = (A#)nAA† = (A#)nAA(1,3),

for any n ≥ 1 and A(1,3) ∈ A{1,3}.

Taking ind(A) = 1 in Theorem 1 and Corollary 1, we characterize n-potency of
the core inverse. Note that A #⃝ is n-potent if and only if A is n-potent.

Corollary 4. If A∈B(X)# and n≥ 2, then the following statements are equivalent:
(i) A #⃝ is n-potent;

(ii) (A #⃝)n−1A = A;
(iii) A is n-potent;
(iv) A#A = An−1;
(v) AA(1,3) = (A #⃝)n−1, for A(1,3) ∈ A{1,3};

(v’) AA† = (A #⃝)n−1;
(vi) A#(A #⃝)n−1 = A #⃝;

(vii) AA #⃝ = (A #⃝)n−1;
(viii) (A #⃝)n−1 is orthogonal projector;

(ix) (A #⃝)n−1 is an idempotent;
(x) A#A = (A#)n−1;

(xi) A# is n-potent;
(xii) A∗ = A∗(A #⃝)n−1;

(xiii) (A #⃝)m = (A #⃝)m+n−1, for some/any m ≥ 1;
(xiv) (A#)m = (A#)m+n−1, for some/any m ≥ 1;
(xv) (A #⃝)n is an outer inverse of A;

(xvi) A#(A #⃝)n−1 is an outer inverse of A;
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(xvi) (A#)n is an outer inverse of A;
(xvii) A#A is an outer inverse of An−1;

(xviii) An−1 = A #⃝A;
(xix) A2A #⃝ is n-potent and (I −An−1)A(I −AA #⃝) = 0.

Choosing n = 2 in Corollary 4, we get equivalent conditions for A #⃝ to be an idem-
potent. We can observe that A #⃝ is an idempotent if and only if A is an idempotent.

Corollary 5. If A ∈ B(X)#, then the following statements are equivalent:
(i) A #⃝ is an idempotent;

(ii) A #⃝A = A;
(iii) A is an idempotent;
(iv) A#A = A;
(v) AA(1,3) = A #⃝, for A(1,3) ∈ A{1,3};

(v’) AA† = A #⃝;
(vi) A#A #⃝ = A #⃝;

(vii) AA #⃝ = A #⃝;
(viii) A #⃝ is orthogonal projector;

(ix) A#A = A#;
(x) A# is an idempotent;

(xi) A∗ = A∗A #⃝;
(xii) (A #⃝)m = (A #⃝)m+1, for some/any m ≥ 1;

(xiii) (A#)m = (A#)m+1, for some/any m ≥ 1;
(xiv) (A #⃝)2 is an outer inverse of A;
(xv) A#A #⃝ is an outer inverse of A;

(xvi) (A#)2 is an outer inverse of A;
(xvii) A#A is an outer inverse of A;

(xviii) A2A #⃝ is an idempotent and (I −A)A(I −AA #⃝) = 0;
(xix) A #⃝A2 = A #⃝A.

Theorem 3 implies several characterizations for the equality A #⃝ = A2 to be satis-
fied.

Corollary 6. If A ∈ B(X)#, then the following statements are equivalent:
(i) A #⃝ = A2;

(ii) AA† = A3;
(ii’) AA(1,3) = A3, for A(1,3) ∈ A{1,3};
(iii) A3 is orthogonal projector;
(iv) A = A4 and (A3)∗ = A3;
(v) A#A = A3 and (A3)∗ = A3.

Recall that A ∈ B(X)# is an EP operator if A# = A† [9, 14]. By Theorem 7, we
obtain some well-known characterizations of an EP operator.

Corollary 7. If A ∈ B(X)#, then the following statements are equivalent:
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(i) A #⃝ = A†;
(ii) A#A = A†A;

(iii) A = A†A2;
(iv) A∗ = A∗A†A;
(v) A#AA∗ = A∗;

(vi) A(AA#)∗ = A;
(vii) A is EP.

Theorem 5 gives necessary and equivalent conditions for A #⃝ = A∗ to hold.

Corollary 8. If A ∈ B(X)#, then the following statements are equivalent:
(i) A #⃝ = A∗;

(ii) A#A = A∗A;
(iii) A#(A†)∗ = A†A.

In addition, if any of statements (i)–(iii) holds, then A is EP.
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