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Abstract. This work is devoted to the study of multiplicity results of solutions for a class of
nonlinear equations involving the square root of the Laplacian. Indeed, we will use variational
methods for smooth functionals, defined on reflexive Banach spaces, in order to achieve the
existence of at least three solutions for the equations. Moreover, assuming that the nonlinear
terms are nonnegative, we will prove that the solutions are nonnegative. Finally, by presenting
an example, we will ensure the applicability of our results.
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1. INTRODUCTION

In the study ahead, we discuss the existence of multiple nontrivial weak solutions
for the problem involving the square root of the Laplacian{

A1/2y = εγ(τ)g(y) in D,

y = 0 on ∂D,
(1)

where D is an open bounded subset of Rn, n ≥ 2, with Lipschitz boundary ∂D , ε > 0
is a real parameter, γ : D →R is an L∞(D)-function with essinft∈Ω γ(t)> 0, and A1/2
is a fractional operator which will be introduced in Section 2 (see [4–6]).

The fractions of the Laplacian, as in the square root of the Laplacian A1/2, are the
infinitesimal generators of Lévy stable diffusion processes. They emerge in irregular
diffusions in plasmas, flames propagation, population dynamics, geophysical fluid
dynamics, and American options in finance.

Recently, elliptic equations involving fractional powers of the Laplacian have been
under investigation from a physical point of view. Nonlocal operators play a major
role in describing a set of phenomena. The recent paper of Cabré and Tan [4] can
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be cited here where the authors discuss the existence, nonexistence, and regularity
of positive solutions of the problem (1) with power-type nonlinearities, along with a
conjecture of Gidas–Spruck type and symmetry results of Gidas–Ni–Nirenberg type.
Some earlier discussions can be seen in the papers [1–3, 9, 10, 12–14, 18, 19]. For
instance, Molica Bisci et al. in [12] reviewed (1) concerning the existence of solu-
tions. They established the existence of at least three weak solutions in L∞-bounded
function space for certain values of ε requiring the nonlinear term g to be continu-
ous, having a suitable growth, by using a variant of Caffarelli–Silvestre’s extension
method. Moreover, Ambrosio et al. in [1], explained the existence and nonexistence
of weak solutions for (1). They established the existence of at least two nontrivial
L1-bounded weak solutions for large values of ε, requiring the nonlinear term g to be
continuous, superlinear at zero, and sublinear at infinity by using a suitable variant of
the Caffarelli–Silvestre extension method.

The present article concentrates on this issue because it is clear that in (1), there
are singularities in the term A1/2(y), which leads to problems in the proofs. This
article concerns existence results for (1). Our main result gives conditions ensuring
the existence of at least two and infinitely many weak solutions for (1).

Throughout this paper, we denote by G the class of all continuous functions g :
R→ R that are superlinear at zero, i.e., limt→0

g(t)
t = 0 and sublinear at infinity, i.e.,

lim|t|→∞

g(t)
t = 0.

The following theorem is the main result of this paper.

Theorem 1. Let g ∈ G .
(a) If g is a positive-valued function, then (1) has at least two weak solutions.
(b) If g is an odd function, then (1) has infinitely many weak solutions.

This article has the following structure. In Section 2, necessary definitions, nota-
tions, and variational theorems are reviewed. In Section 3, a proof of the main results
is presented. Finally, in Section 4, an example and several comments are given.

2. PRELIMINARIES

We give the following theorems (see [11,16]) as our main tools to prove the results
of Section 3.

Theorem 2 ([11, Theorem 4.4]). Let X be a Banach space and M : X → R be
a differentiable functional that is bounded below. If M satisfies the (PS)c-condition
with c = infX M , then M has a minimum on X .

Obviously, the (PS)c-condition for each c ∈ R is obtained by the (PS)-condition.

Theorem 3 ([11, Theorem 4.10]). Let Q ∈ C1(X ,R) satisfy the (PS)-condition.
Assume that there exist y0,y1 ∈ X and a bounded neighborhood D of y0 satisfying
y1 /∈ D and infz∈∂D Q (z) > max{Q (y0),Q (y1)}. Then there exists a critical point y
of Q , i.e., Q ′(y) = 0, with Q (y)> max{Q (y0),Q (y1)}.
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Theorem 4 ([16, Theorem 9.12]). Let X be a real Banach space with infinite
dimension, Q ∈ C1(X ,R) be an even functional which satisfies the (PS)-condition,
and Q (0) = 0. Assume that X =V

⊕
W , where V has infinite dimension, there exist

β > 0 and e > 0 so that Q (y)≥ β for each y ∈ W with ∥y∥= e and for any subspace
Y ⊂ X with finite dimension, there is d = d(Y ) so that Q (y)≥ 0 on X \Bd(Y ). Then
Q has an unbounded sequence of critical values.

Readers can see [7, 20], where Theorems 3 and 4 have been successfully used to
guarantee multiple solutions of degenerate nonlocal problems and nonlinear impuls-
ive differential equations, respectively. Reference can also be made to [21], where
Theorem 4 has been used to guarantee the existence of infinitely many solutions for
a boundary value problem.

To produce appropriate function spaces and apply the variational method to discuss
the existence of solutions for (1), we introduce the following preliminaries, which
have been initially given in [4], and which we will use in the proofs of our main
results. Let H 1/2

0 (D) be the space

H 1/2
0 (D) :=

{
y ∈ L2(D) : y =

∞

∑
j=1

κ jE j and
∞

∑
j=1

κ
2
jε

1/2
j < ∞

}
with the norm

∥y∥H 1/2
0 (D)

:=

(
∞

∑
j=1

κ
2
jε

1/2
j

)1/2

,

where {E j,ε j} j∈N are the eigenfunctions and eigenvalues of the usual linear problem
A1/2y = εg(y) in D with Dirichlet boundary condition y = 0 on ∂D . We note that

0 < ε1 < ε2 < ε3 < .. . < ε j < ε j+1 < .. .

and ε j → ∞ as j → ∞. Moreover, we can suppose that the eigenfunctions {E j} j∈N
are normalized as∫

D
|∇E j(τ)|2dτ = ε j

∫
D
|E j(τ)|2dτ = ε j, j ∈ N

and ∫
D

∇Ei(τ)∇E j(τ)dτ = ε j

∫
D

Ei(τ)E j(τ)dτ = 0, i ̸= j.

Remark 1. The operator A1/2 of the Laplace operator −∆ in a bounded domain
with zero-boundary conditions is given via the spectral decomposition, using the
powers of the eigenvalues of the primary operator. Therefore, pursuant to primeval
results on positive operators in D , if {(E j,ε j)} j∈N are the eigenfunctions and ei-
genvalues of the usual linear Dirichlet problem −∆y = εg(y) in D with Dirichlet
boundary condition y = 0 on ∂D , then {(E j,ε

1/2
j )} j∈N are the eigenfunctions and

eigenvalues of the corresponding fractional problem {(E j,ε j)} j∈N.
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Remark 2. The fractional operator A1/2 should not be confused with the integro-
differential operator (−∆)1/2. In fact, these two operators, although determined in
the same way, have distinct behaviors in eigenvalues, eigenfunctions and so on (see
[15, 17] for more details).

Remark 3. The operator A1/2 is well defined on the space H 1/2
0 (D), and it has the

form A1/2y = ∑
∞
j=1 κ2

jε
1/2
j E j, where κ j =

∫
D y(τ)E j(τ)dτ.

Remark 4. Let D be a bounded domain. Set CD := {(τ,ξ) : τ ∈ D, ξ > 0} ⊂
Rn+1
+ and ∂LCD := ∂D × [0,∞), and for a function y ∈ H 1/2

0 (D), define the harmonic
extension E(y) to the cylinder CD as the solution of div(∇E(y)) = 0 in CD , E(y) = 0
on ∂LCD and Tr(E(y)) = y on D , where Tr(E(y))(τ) = E(y)(τ,0) for all τ ∈ D . We
note that E(y) belongs to the Hilbert space

X 1/2
0 (D) :=

{
z ∈ L2(D) : z = 0 on ∂LCD ,

∫
D
|∇z(τ,ξ)|2dτdξ < ∞

}
=

{
z ∈ L2(CD) : z =

∞

∑
j=1

η jE je−ε
1/2
j ξ and

∞

∑
j=1

η
2
jε

1/2
j < ∞

}
,

with the standard norm

∥z∥X 1/2
0 (D)

:=
(∫

CD

|∇z(τ,ξ)|2dτdξ

) 1
2

(see [4, Lemma 2.10] for more details). On the other hand, the trace operator Tr :
X 1/2

0 (CD) → H 1/2
0 (D), given by Tr(z)(τ) := z(τ,ξ) for all τ ∈ D , is a continuous

map (see [4, Lemma 2.6]). Moreover,

H 1/2
0 (D) :=

{
y ∈ L2(D) : y = Tr(z) for some z ∈ X 1/2

0 (CD)
}
⊂ H 1/2(D)

and ∥Tr(z)∥H 1/2
0 (D)

≤ ∥z∥X 1/2
0 (CD )

. The embedding j : Tr(H 1/2
0 (CD)) ↪→ Lp(D) is

continuous for any p ∈ [1,2n/n− 1], and it is compact whenever p ∈ [1,2n/n− 1).
Hence, if p ∈ [1,2n/n−1], then there is a constant cp > 0 (depending on p, n and the
Lebesgue measure of D) so that

∥Tr(z)∥Lp(D) ≤ cp ∥z∥X 1/2
0 (CD )

(2)

for every z ∈ X 1/2
0 (CD) (see [2–4]). We define the fractional operator A1/2 in D with

A1/2y(τ) :=− lim
ξ→0+

∂E(y)
∂ξ

(τ,ξ) for all τ ∈ D,

where E(y) ∈ X 1/2
0 (CD) is the extension of y ∈ H 1/2

0 (D). Thus,

A1/2y(τ) =
∂E(y)

∂ν
(τ) for all τ ∈ D,
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where ν is the unit outer normal to CD at D ×{0}.

A function y = Tr(z) ∈ H 1/2
0 (D) is a weak solution of (1) if z ∈ X 1/2

0 (CD) is a
weak solution of 

−div(∇z) = 0 in CD ,

z = 0 on ∂LCD ,
∂z
∂ν

= εγ(τ)g(Tr(τ)) on D,

(3)

i.e., ∫
CD

⟨∇z,∇ϑ⟩dτdξ = ε

∫
Ω

β(τ) f (Tr(z)(τ))Tr(ϑ)(τ)dτ

for every ϑ ∈ X
1
2

0 (CD).
Now, we consider the functionals

M (z) :=
1
2
∥z∥2

X 1/2
0 (CD )

and N (z) :=
∫

D
γ(τ)G(Tr(z)(τ))dτ (4)

for all z ∈ X 1/2
0 (CD). Since

lim
∥z∥

X 1/2
0 (CD )

→∞

M (z) = ∞,

this means that the functional M : X 1/2
0 (CD)→ R is coercive. Also, M and N are

Fréchet differentiable and

M ′(z)ϑ =
∫

CD

⟨∇z,∇ϑ⟩dτdξ and N ′(z)ϑ =
∫

D
γ(τ) f (Tr(z)(τ))Tr(ϑ)(τ)dτ

for all z,ϑ ∈ X 1/2
0 (CD). So, the critical points of the functional Iε : X 1/2

0 (CD)→ R
defined by Iε(z) := M (z)− εN (z) are exactly the weak solutions of (3). Thus, the
traces of critical points of Iε are the weak solutions of (1).

Remark 5. The functional Iε is weakly lower semicontinuous on X 1/2
0 (CD). In-

deed, the map z →
∫

D γ(τ)G(Tr(z)(τ))dτ is continuous in the weak topology of
X 1/2

0 (CD), and the map z →
∫

CD
|∇z(τ,ξ)|2dτdξ is lower semicontinuous in the weak

topology of X 1/2
0 (CD).

3. PROOF OF THE MAIN THEOREM

In this section, we prove Theorem 1. For this purpose, we first provide the follow-
ing lemma.

Lemma 1 ([1, Lemma 4.1]). Let g ∈ G . Then for every ε > 0, the functional Iε

satisfies the (PS)-condition.
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3.1. Proof of Theorem 1(a)

Proof of Theorem 1(a). In our case, it is clear that Iε(0) = 0. Lemma 1 gives that
Iε satisfies the (PS)-condition.

Step 1

Since g ∈ G , for ε > 0 fixed, there exist two positive constants δ1 and δ2 such that
| f (t)| ≤ ε

∥β∥L∞(Ω)
|t| for all t ∈R with 0 < |t|< δ1λ, and |g(t)| ≤ λ

∥γ∥L∞(D)
|t| for all t ∈R

with |t|> δ2λ. Set 0 < δλ < min{1,δ1λ,δ2λ−1}. Then

|g(t)| ≤ λ

∥γ∥L∞(D)

|t| for all t ∈ R with 0 < |t|< δλ and |t|> δ2λ.

Besides, the function h(t) = |g(t)|
|t| is continuous on [δλ,δ

−1
λ
]∪ [−δ

−1
λ
,−δλ], and there-

fore, there exists 0 < mλ < 1−λ

c2
2∥γ∥L∞(D)

such that |h(t)| ≤ mλ for all t ∈ [δλ,δ
−1
λ
]∪

[−δ
−1
λ
,−δλ]. Thus, we can say

|g(t)| ≤

(
λ

∥γ∥L∞(D)

+mλ

)
|t| for all t ∈ R.

Now, since supt∈R G(t)> 0 and by using (2) for p = 2, we have

|N (z)| ≤
∫

D
|γ(τ)||G(Tr(z)(τ))|dτ

≤ ∥γ∥L∞(D)

∫
D

∫ Tr(z)(τ)

0

(
λ

∥γ∥L∞(D)

+mλ

)
|ξ|dξdτ

≤
λ+mλ ∥γ∥L∞(D)

2
∥Tr(z)(τ)∥2

L2(D)

≤
λ+mλ ∥γ∥L∞(D)

2
c2

2 ∥z∥2
X 1/2

0 (CD )
.

Then, for any y ∈ X , by (4), we get

Iε(y)≥
∥y∥2

X 1/2
0 (CD )

2

(
1−λ− c2

2mλ ∥γ∥L∞(D)

)
, (5)

and we conclude that Iε is a coercive functional which is bounded below. Because Iε

satisfies the (PS)-condition by Lemma 1, Theorem 2 yields that there is a minimum
point z0 of Iε on X 1/2

0 (CD) and 0 = Iε(0)≥ Iε(z0) and I ′
ε(z0) = 0.
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Step 2

Since z0 = minX 1/2
0 (CD )

Iε, there is L > 0 large enough so that

Iε(z0)≤ 0 < inf
z∈∂BL

Iε(z),

where BL =
{

z ∈ X 1/2
0 (CD) : ∥z∥X 1/2

0 (CD )
< L

}
. Now, we will show that there exists

z1 with ∥z1∥X 1/2
0 (CD )

> L such that Iε(z1)< inf∂BL Iε(z). For this, let ϑ1 ∈ X 1/2
0 (CD)

and z1 = κϑ1, κ > 0, where ϑ1 corresponding to ε1 is the first eigenfunction of (3)
and ∥ϑ1∥X 1/2

0 (CD )
= 1. Since lim|t|→∞

g(t)
t = 0, we can consider constants a > 0 and

α > 2 in a way that G(t)≥ a|t|α for all t ∈ R. Hence,

Iε(z1) = (M − εN )(κϑ1)

≤ 1
2
∥κϑ1∥2

X 1/2
0 (CD )

− ε

∫
D

G(κϑ1(τ))dτ

≤ κ2

2
− εκ

αa
∫

D
|ϑ1(τ)|αdτ.

So by α > 2, there is sufficiently large κ > L > 0 so that Iε(κϑ1) < 0. Therefore,
max{Iε(z0),Iε(z1)}< infz∈∂BL Iε(z). Then, Theorem 3 with X :=X 1/2

0 (CD) and ϑ :=
Iε gives us the critical point z∗. So, y0 and y∗ are two critical points of Iε and thus,
are two weak solutions of (3). □

3.2. Proof of Theorem 1(b)

Proof of Theorem 1(b). In order to prove this part, we set X :=X 1/2
0 (CD) and con-

sider the continuously Gâteaux-differentiable functional Iε, that, by (4), is an even
functional and Iε(0) = 0. We continue the proof of this part in two steps to show that
the functional Iε satisfies the assumptions of Theorem 4.

Step 1

The coercivity of Iε is achieved by (5), and this, together with the (PS)-condition,
by the minimization theorem [11, Theorem 4.4], implies that the functional Iε has a
minimum critical point y with Iε(y)≥ ι > 0 and ∥y∥X 1/2

0 (CD )
= ρ for sufficiently small

ρ > 0.

Step 2

Let K ⊂ X 1/2
0 (CD) be a finite-dimensional subspace. Since lim|t|→∞

g(t)
t = 0, there

exist constants a > 0 and α > 2 so that G(t)≥ a|t|α for all t ∈R. Now, for each κ > 0
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and y ∈ K \{0} with ∥y∥X 1/2
0 (CD )

= 1, we have

Iε(κy) = (M − εN )(κz)

≤ 1
2
∥κz∥2α

X 1/2
0 (CD )

− ε

∫
D

G(κz(τ))dτ

≤ κ2

2
∥y∥2α

X 1/2
0 (CD )

− εκ
αa1

∫
D
|z(τ)|αdτ →−∞ as κ → ∞.

This yields the existence of κ0 so that ∥κz∥X 1/2
0 (CD )

> ρ and Iε(κz)< 0 for every κ ≥
κ0 > 0. Since K is a finite-dimensional subspace, there exists R = R (K )> 0 such
that Iε(z) ≤ 0 on K \BR (K ). Due to Theorem 4, the functional Iε(z) has infinitely
many critical points, which are the weak solutions of (3). □

4. EXAMPLES AND REMARKS

Finally, we give an example and several concluding remarks.

Example 1. Let D = {(τ1,τ2) ∈R2 : τ2
1 +τ2

2 < 4} ⊂R2 and g(t) = t2/(1+ t2) for
all t ∈ R. We see that g(t) ≥ 0 for all t ∈ R is an odd function and g ∈ G . Hence,
the problem A1/2y = εy2/(1+ y2) in D with boundary condition y = 0 on ∂D , by
applying Theorem 1, for every ε > 0, possesses infinitely many weak solutions in the
space H 1/2

0 (D).

Remark 6. For each g ∈ G , the number cg := max|t|>0
|g(t)|
|t| is well defined and

strictly positive. Furthermore, the sublinear growth condition at infinity on the non-
linearity g complements the classical Ambrosetti and Rabinowitz assumption.

Remark 7. Example 1 shows that our existence results for (1) in Theorem 1 is dif-
ferent from the existence results of Molica Bisci in [12]. This is because the function
g in [12] should satisfy the condition

|g(t)| ≤ a1 +a2|t|q−1 for a1,a2 > 0, q ∈
(

1,
2n

n−1

)
, t ∈ R, (6)

while in Example 1, 2n/(n−1) = 2 and g(t) = t2/(1+ t2), and so g does not satisfy
(6).

Remark 8. We note that, if g(0) ̸= 0, then Theorem 1(a) gives the existence of two
nontrivial weak solutions for (1). If we do not consider the condition g(0) ̸= 0, then
the second solution y2 of (1) can be trivial, but the problem has at least one nontrivial
solution.

Remark 9. We notice that, by Remark 8, the solutions obtained in Example 1 are
nonzero because g(0) = 1 ̸= 0.
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Remark 10. If limsupξ→0+ g(ξ)/|ξ| = ∞ and liminfξ→0+ g(ξ)/|ξ| > −∞, then the
second weak solution obtained by Theorem 1(a) can be nontrivial even in the case
g(0) = 0. Indeed, let ε > 0 and let M and N be as given in (4). Due to Theorem 2
and Lemma 1, Iε =M −εN has a critical point yε that is a global minimum of Iε. The
function yε cannot be trivial. Indeed, by the same argument as [8, Remark 3.3], we
can prove that limsup∥y∥→0+ M (y)/N (y) = ∞. So, there is a sequence {ζn} ⊂ X that
converges strongly to zero, and for sufficiently large n, Iε(ζn) = M (ζn)− εN (ζn)<
0. Since yε is a global minimum of Iε, we obtain Iε(yε)< 0, so that yε is not trivial.

Remark 11. If g is nonnegative, then Theorem 1(a) is a bifurcation result, i.e., the
pair (0,0) ∈ H ε

g ⊂ H 1/2
0 (D)×R with

H ε
g :=

{
(yε,ε) ∈ H 1/2

0 (D)× (0,∞) : yε is a nontrivial weak solution of (1)
}
.

Practically, by the proof of Theorem 1(a), ∥yε∥H 1/2
0 (D)

→ 0 as ε → 0. Hence, there

exist two sequences {yk} in H 1/2
0 (D) and {εk} in R+ (here yk = yεk ) such that εk →

0+ and ∥yk∥ → 0 as k → ∞. Moreover, since g is nonnegative, M (y) < 0 for all
y ∈ R, and thus, the mapping (0,ε∗) ∋ ε 7→ Iε(yε) is strictly decreasing. Hence, for
every ε1,ε2 ∈ (0,ε∗) with ε1 ̸= ε2, the weak solutions yε1 and yε2 ensured by Theorem
1(a) are different.

Remark 12. In Theorem 1, we looked for the points of the functional Iε naturally
associated with (3). We note that, in general, Iε can be unbounded from below in
X 1/2

0 (CD). Indeed, for example, in the case when g(t) = 1+ |t|a−2t for all t ∈R with
a > 2, for any fixed z ∈ X 1/2

0 (CD)\{0} and ι ∈ R, we obtain

Iε(ιz)≤
1
2
∥ιz∥2

X
1
2

0 (CD )
− ε

∫
D

γ(τ)G(Tr(ιz(τ)))dτ

≤ ι2

2
∥z∥2

X
1
2

0 (CD )
− εγ|D|

(
ι∥Tr(z)∥L1(D)+

ιa

a
∥Tr(z)∥a

La(D)

)
→−∞

as ι → ∞, where γ = infτ∈D γ(τ) and |D|=
∫

D dτ. Hence, direct minimization cannot
be used to find critical points of the functional Iε.

Remark 13. All results of this paper are still valid if we consider the more general
problem {

Am/2y = εγ(τ)g(y) in D,

y = 0 on ∂D
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with k ∈ (0,2) and Am/2y(τ) := −κm limz→0+ z1−m ∂E(y)
∂z (τ,z) for all τ ∈ D , where y

belongs to the space

H m/2
0 (D) :=

y ∈ L2(D) : ∥y∥H m/2
0 (D)

=

(
∞

∑
j=1

a2
jε

m/2
j

)1/2

< ∞


and its m-harmonic extension Em(y) to the cylinder C is the unique solution of the
local problem 

−div(y1−m∇z) = 0 in CD ,

Em(y) = 0 on ∂LCD ,

Tr(Em(y)) = y on D.

Em(y) as an extension lies in the space

X m/2
0 (D) :=

{
z ∈ L2(Ω) : z = 0 on ∂LCD ,

∫
D

ξ
1−m|∇z(τ,ξ)|2dτdξ < ∞

}
=

{
z ∈ L2(CD) : z =

∞

∑
j=1

η jE je−ε
m/2
j ξ and

∞

∑
j=1

η
2
jε

m/2
j < ∞

}
and the operator Em : H 1/2

0 (D)→ X 1/2
0 (CD) is an isometry.

Remark 14. Although we did not use the test function in the proof of our main
results, in the approach of some manuscripts on this topic such as [12], vt0

α0 : Ω → R
as

vt0
α0
(y) :=


0 if y ∈ Ω−B(y0, t0),
2α0
t0
(t0 −|y− y0|) if y ∈ B(y0, t0)−B(y0, t0/2),

α0 if y ∈ B(y0, t0/2)

as a class of test functions in X m/2
0 (D) is used.

Remark 15. If g is an odd function, then we have the same result as Theorem 1(b)
by placing the following conditions on g:
(G1) there are constants ρ > 0 and 0 < εR1 < 1

2 min{1,m0} such that G(y) ≤
R1|y|2, for all y ∈ R with |y| ≤ ρ;

(G2) there are constants ρ1 > 0, δ1 > 0 and α1 > γ such that G(y)≥ δ1|y|α1 for all
y ∈ R with |y| ≥ ρ;

(G3) there is a constant β > 2, γ2 ≥ 0 and 0 < α2 < 2 such that νG(ξ)− ξg(ξ) ≤
γ2|y|α2 .

Remark 16. In the future, it may be of interest to continue the research of this
paper in this line, extending the study to the case that g is not a continuous func-
tion, but discontinuous, starting from the case that g is a function of vanishing mean
oscillation.
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