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Abstract. The paper aims to present a new primary ideal in a commutative ring R with nonzero
identity element. We introduce the new primary ideal as an n-1-absorbing primary ideal that is a
generalization of both primary and 1-absorbing primary ideals. We propose to achieve two goals
with this paper. Firstly, we study and characterize some essential properties of an n-1-absorbing
primary ideals and figure out the relations between the other types of ideals such as prime, 1-
absorbing primary and irreducible ideals. Then, we classify some special rings that admit an
n-1-absorbing primary ideal. We provide the results by introducing some examples.

2010 Mathematics Subject Classification: 13A15; 13C05

Keywords: primary ideal, 1-absorbing primary ideal, n-1-absorbing primary ideal

1. INTRODUCTION

Throughout this study, we assume that R is a commutative ring with identity (1 ̸=
0) and n is a positive integer.

Firstly, we introduce some well-known facts for ideals in a commutative ring that
we need to use in this paper: An ideal I is called proper, if I ̸= R. The radical of I,
denoted by

√
I, is defined by {r ∈ R : rn ∈ I for some positive integer n}. A proper

ideal I of R and x ∈ R− I, the residual of I by x, (I :R x) is defined by {r ∈ R : rx ∈ I}.
A proper ideal I of a commutative ring is called irreducible, if I cannot be represented
as an intersection of two ideals, properly contained by I. A prime ideal of a ring is
called a divided prime ideal if it is comparable to every principal ideal of a ring.
Moreover, we need to introduce some well-known rings that we use to study in this
paper: A ring R is called a chained ring if a|b or b|a for every a,b ∈ R. Note that
every chained ring is a divided ring. An integral domain R is called a divided domain
if every prime ideal of R is a divided prime ideal. An integral domain R is called a
valuation domain if either x|y or y|x for all 0 ̸= x,y ∈ R, [2].
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Prime ideals in commutative algebra always deserve more attention. Obtaining
some important new prime ideals provides the concepts and tools to effect a treat-
ment of rings in a direct and elegant way so that the structures of rings are signific-
antly figured out. This not only gives a better understanding of the structure of rings
but opens a vista comparable to the developments of commutative algebra. In [2],
Anderson and Badawi have introduced and studied the n-absorbing ideals, namely,
the generalization of the prime ideals. According to the definition in [2], a proper
ideal I of R is called an n-absorbing ideal, if x1, . . . ,xn+1 ∈ R and x1 · · ·xn+1 ∈ I, then
there are n of the xi’ s whose product is in I. The mentioned study has led to be
introduced the new ideal which is a generalization of both n-absorbing ideals and
primary ideals. It has been defined by Becker and it is called n-absorbing primary
ideal, [4]. Moreover, in [6], Ulucak, Koc, and Tekir have defined an n-1-absorbing
prime ideal. We define a new ideal which is called an n-1-absorbing primary ideal
that is a generalization of n-1-absorbing prime ideal as well. A proper ideal I of R
is defined as n-absorbing primary ideal if x1, . . . ,xn+1 ∈ R and x1 · · ·xn+1 ∈ I imply
either x1 · · ·xn ∈ I or there are n of the xi’s whose product (except for x1 · · ·xn) is in√

I, [4]. Very recently, in [3], Badawi and Celikel have introduced another primary
ideals that is called 1-absorbing primary ideal. A proper ideal I of R is called a 1-
absorbing primary ideal if non-units x1,x2,x3 ∈ R and x1x2x3 ∈ I imply either x1x2 ∈ I
or x3 ∈

√
I, [3].

This study allows us to classify and construct a new class of prime ideals which
is generalization of the primary ideals. A proper ideal I of R is called an n-1-
absorbing primary ideal if x1 · · ·xn+1 ∈ I for some non-units x1, . . . ,xn+1 ∈ R, then,
either x1x2 · · ·xn ∈ I or xn+1 ∈

√
I.

In the first part the focus will be on the discussion to characterize the n-1-absorbing
primary ideals introducing some useful and essential properties to figure out the be-
haviour of the n-1-absorbing primary ideals in a commutative ring R. Moreover, we
provide the results by finding some examples.

The final goal of this paper is to study on the n-1-absorbing primary ideals to
characterize and find out the structure of some special rings ,e.i., Dedekind domain,
valuation domain and quasi local rings. Explicitly, with the obtaining examples we
will explain the structure of rings in commutative algebra.

2. CHARACTERIZATION OF n-1-ABSORBING PRIMARY IDEALS

In this section of this study we give the definition of an n-1-absorbing primary
ideal. Moreover, we characterize and study some essential properties of n-1-absorb-
ing primary ideal in a commutative ring R to understand the structure of R. Finally,
we explain the structure of a commutative ring R presenting some examples for the
n-1-absorbing primary ideal of R.
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Definition 1. Let n be a positive integer. A proper ideal I of a ring R is called
an n-1-absorbing primary ideal if x1 · · ·xn+1 ∈ I for some non-units x1, . . . ,xn+1 ∈ R,
then either x1x2 · · ·xn ∈ I or xn+1 ∈

√
I.

By the definition of n-1-absorbing primary ideal, it can be easily seen that every
primary ideal of R is an n-1-absorbing primary ideal, and every 1-absorbing primary
ideal of R is n-1-absorbing primary ideal for n ≥ 2. The converses of these implic-
ations can not be true generally. Therefore, to make the implication clear we give
the following example. Obviously, the concepts of 1-1-absorbing primary ideal and
primary ideal of R coincide for n= 1. Also, when we take n= 2, then by the definition
of n-1-absorbing primary ideal, we see that the definition allows us to interpret that a
1-absorbing primary ideal and a 2-1-absorbing primary ideal coincide. Consequently,
an n-1-absorbing primary ideal assert its importance that it is a generalization of both
primary ideals and 1-absorbing primary ideals.

Example 1. Let S = F [x,y], where F is a field. Consider M = (x,y)S and R = SM.
It can be seen that R is a quasi local ring with maximal ideal MM. Then I = yMM =
(xy,y2)R is a 2-1-absorbing primary ideal of R, [3, Theorem 5]. However, I is not a
primary ideal of R since xy ∈ I, but neither y ∈ I nor x ∈

√
I = yR.

Now, we give some basic and useful results of an n-1-absorbing primary ideal as
follows:

Theorem 1. Let I be a proper ideal of a ring R and n be a positive integer. Then,
the following statements are satisfied:

(1) Every n-1-absorbing prime ideal of R is an n-1-absorbing primary ideal.
(2) Every n-1-absorbing primary ideal of R is an n-absorbing primary ideal.
(3) Let m ≥ n be a positive integer. If I is an n-1-absorbing primary ideal of R,

then I is an m-1-absorbing ideal of R.
(4) Let I be an n-1-absorbing primary ideal of R. Then

√
I is a prime ideal of R.

Proof.
(1) It is clear from the definitions of n-1-absorbing prime ideal and n-1-absorbing

primary ideal.
(2) Assume that I is an n-1-absorbing primary ideal of R and x1 · · ·xn+1 ∈ I for

some x1, . . . ,xn+1 ∈ R. If at least one of the xi’s is unit, then the proof is done.
So, we assume that x1, . . . ,xn+1 ∈ R are non-unit. Since I is an n-1-absorbing
primary ideal of R, then we have either x1x2 · · ·xn ∈ I or xn+1 ∈

√
I. This

implies that x1x2 · · ·xn ∈ I or a product of n of the x′is which contains xn+1 is
in

√
I. Thus, I is an n-absorbing primary ideal of R.

(3) We use mathematical induction on n,m. To show that the claim is true, it is
sufficient to prove that I is an (n+1)-1-absorbing primary ideal if I is an n-
1-absorbing primary ideal of R. Hence, we assume that I is an n-1-absorbing
primary ideal of R and x1x2 · · ·xn+1xn+2 = (x1x2)x3 · · ·xn+1xn+2 ∈ I for some
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non-units x1,x2, . . . ,xn+2 ∈ R. Since I is an n-1-absorbing primary ideal of
R, we have (x1x2)x3 · · ·xn+1 ∈ I or xn+2 ∈

√
I. As a result, I is an (n+1)-1-

absorbing primary ideal of R.
(4) Let xy∈

√
I and x /∈

√
I for some x,y∈R. Then, there exists a positive integer

k such that xkyk ∈ I. If k ≤ n, then we get xnyk = xn−kxkyk ∈ I. Since x ̸∈
√

I,
we conclude that xn ̸∈ I and hence yk ∈

√
I, namely, y ∈

√
I. Now, we assume

k ≥ n. By (3), I is k-1-absorbing primary ideal and since xk ̸∈ I, we conclude
that yk ∈

√
I and so y ∈

√
I. Then,

√
I is a prime ideal of R.

□

Now, we give the following examples to show that the converses of Theorem 1 (1),
Theorem 1 (2) are not true generally. Moreover, we provide the Example 1 verifies
that the converse of the Theorem 1 (4) is not true in general.

Consider the Example 1 for the converse of Theorem 1 (3): I = yMM = (xy,y2)R
is a 2-1-absorbing primary ideal of R, however it is not a 1-1-absorbing primary.

Example 2. Consider the ideal (8) of the ring Z. It is clear that (8) is a 2-1-
absorbing primary ideal but not a 2-1-absorbing prime ideal since 2 · 2 · 2 ∈ (8), but
neither 2.2 ∈ (8) nor 2 ∈ (8).

Example 3. Consider the ideal (15) of the ring Z. It is clear that (15) is a 2-
absorbing primary ideal but not a 2-1-absorbing primary ideal since 2 · 3 · 5 ∈ (15),
but neither 2.3 ∈ (15) nor 5 ∈

√
(15).

Theorem 2. Let I be an n-1-absorbing primary ideal of R and x ∈ R− I be a
non-unit element. Then (I :R x) is an (n−1)-1-absorbing primary ideal of R.

Proof. Let x1 · · ·xn ∈ (I :R x) for some non-units x1, . . . ,xn ∈ R. Then xx1 · · ·xn ∈ I.
By the assumption, we have either xx1 · · ·xn−1 ∈ I or xn ∈

√
I ⊆

√
(I :R x) and so

x1x2 · · ·xn−1 ∈ (I :R x) or xn ∈
√

(I :R x). Therefore, (I :R x) is an (n−1)-1-absorbing
primary ideal of R. □

Theorem 3. Let I be an n-1-absorbing primary ideal of a ring R with I ⊂
√

I and
n ≥ 2. If m ≥ 2 is the least positive integer with xm ∈ I for x ∈

√
I− I, then (I :R xm−1)

is an (n−m+1)-1-absorbing primary ideal of R.

Proof. We see that m ≤ n since I is an n-1-absorbing primary ideal of R and
thus it must be n−m+ 2 ≥ 2. Let x1x2 · · ·xn−m+2 ∈ (I :R xm−1) for some non-units
x1, . . . ,xn−m+2 ∈ R. Then, xm−1x1x2 · · ·xn−m+2 ∈ I. Hence, by the assumption, we
obtain that xm−1x1x2 · · ·xn−m+1 ∈ I or xn−m+2 ∈

√
I ⊆

√
(I :R xm−1) . Therefore, we

have x1x2 · · ·xn−m+1 ∈ (I :R xm−1) or xn−m+2 ∈
√
(I :R xm−1). Thus, (I :R xm−1) is an

(n−m+1)-1-absorbing primary ideal of R. □

Corollary 1. Let I be an n-1-absorbing primary ideal of a ring R with I ⊂
√

I and
n ≥ 2 be the smallest positive integer with xn ∈ I for x ∈

√
I− I. Then (I :R xn−1) is a

primary ideal of R.
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Proof. Let us choose n = m in Theorem 3. So (I :R xn−1) is an (n− n+ 2)-1-
absorbing primary ideal of R, namely, (I :R xn−1) is a 1-1-absorbing primary ideal of
R. Thus, (I :R xn−1) is a primary ideal of R. □

Theorem 4. A proper ideal I of a ring R is an n-1-absorbing primary ideal if and
only if

√
(I :R x1 · · ·xn) =

√
I where x1 · · ·xn /∈ I for all non-units x1, . . . ,xn ∈ R.

Proof.

(⇒): Let I be an n-1-absorbing primary ideal of a ring R and x1 · · ·xn /∈ I
for some non-units x1, . . . ,xn ∈ R. It is obvious that

√
I ⊆

√
(I :R x1 · · ·xn).

Thus, we assume that y ∈
√
(I :R x1 · · ·xn). Then, there is a positive in-

teger k with yk ∈ (I :R x1 · · ·xn). Since x1 · · ·xnyk ∈ I and x1 · · ·xn /∈ I, then,
by the assumption, we have yk ∈

√
I. Thus, y ∈

√
I and so we have that√

(I :R x1 · · ·xn)⊆
√

I and thus we obtain
√
(I :R x1 · · ·xn) =

√
I.

(⇐): Let y1 · · ·yn+1 ∈ I and y1 · · ·yn /∈ I for some non-units y1, . . . ,yn+1 ∈ R.
Since yn+1 ∈ (I :R y1 · · ·yn) ⊆

√
(I :R y1 · · ·yn), by the assumption we get

yn+1 ∈
√

I. Thus, I is an n-1-absorbing primary ideal.

□

By the Theorem 4, we give the following corollary:

Corollary 2. Let I be an n-1-absorbing primary ideal of a ring R and x ∈ R−
√

I.
Then

√
(I :R xn) =

√
I.

Theorem 5. Let I be a proper ideal of R. The following statements are equivalent.

(1) I is an n-1-absorbing primary ideal of R.
(2) If x1x2 · · ·xnJ ⊆ I for some non-units x1,x2, . . . ,xn ∈ R and a proper ideal J of

R, then x1x2 · · ·xn ∈ I or J ⊆
√

I.
(3) If I1I2 · · · In+1 ⊆ I for some proper ideals I1, I2, . . . , In+1 of R, then I1I2 · · · In ⊆ I

or In+1 ⊆
√

I.

Proof.

(1)⇒ (2): Let I be an n-1-absorbing primary ideal of R. Assume x1x2 · · ·xnJ ⊆
I and x1x2 · · ·xn /∈ I for some non-units x1,x2, . . . ,xn ∈ R and a proper ideal
J of R. Then x1x2 · · ·xn j ⊆ I and x1x2 · · ·xn /∈ I for every j ∈ J. By the
assumption, j ∈

√
I and so J ⊆

√
I. Thus, we complete the proof.

(2)⇒ (3): Suppose that I1I2 · · · In+1 ⊆ I and I1I2 · · · In ⊈ I for some proper ideals
I1, I2, . . . , In+1 of R. Then, there are x1 ∈ I1,x2 ∈ I2, . . . ,xn ∈ In such that
x1x2 · · ·xn /∈ I. Since x1x2 · · ·xnIn+1 ⊆ I, then, by the assumption, we have
In+1 ⊆

√
I.

(3)⇒ (1): It is straightforward.

□
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Theorem 6. Let f : R → R′ be a ring homomorphism such that f (x) is a non-unit
in R′ for all non-unit elements x in R and f (1) = 1. Then the followings are satisfied:

(1) If J is an n-1-absorbing primary ideal of R′, then f−1 (J) is an n-1-absorbing
primary ideal of R.

(2) If f is an epimorphism and I is a proper ideal of R with ker( f )⊆ I, then I is
an n-1-absorbing primary ideal of R if and only if f (I) is an n-1-absorbing
primary ideal of R′.

Proof.
(1) Let x1 · · ·xn+1 ∈ f−1 (J) for some non-unit elements x1, . . . ,xn+1 ∈ R. Then,

f (x1 · · ·xn+1) = f (x1) · · · f (xn+1) ∈
√

J. By the assumption, we obtain
f (x1) · · · f (xn) ∈ J or f (xn+1) ∈

√
J. Hence x1 · · ·xn ∈ f−1 (J) or xn+1 ∈

f−1
(√

J
)
=

√
f−1(J). Consequently, f−1 (J) is an n-1-absorbing primary

ideal of R.
(2) Let f be a surjective homomorphism and I is a proper ideal of R with ker( f )⊆

I. Then I = f−1 ( f (I)). So, we sssume that f (I) is an n-1-absorbing primary
ideal of R′. Thus, I is an n-1-absorbing primary ideal of R by (1). For the
converse of (2), assume that I is an n-1-absorbing primary ideal of R and
y1y2 · · ·yn+1 ∈ f (I) for some non-unit elements y1,y2, . . . ,yn+1 ∈ R. By the
assumption, we get f (xi) = yi for each 1 ≤ i ≤ n and so f (x1) · · · f (xn+1) ∈
f (I). Then, we have x1 · · ·xn+1 ∈ I since ker( f ) ⊆ I. Since I is an n-1-
absorbing primary ideal, we deduce that either x1 · · ·xn ∈ I or xn+1 ∈

√
I and

so, y1 · · ·yn ∈ f (I) or yn+1 ∈ f (
√

I) =
√

f (I), thus the proof is done.
□

Corollary 3. Let I and J be proper ideals of a ring R with I ⊆ J and u(R/I) =
{x+ I : x ∈ u(R)}. Then the followings are satisfied:

(1) J is an n-1-absorbing primary ideal of R if and only if J/I is an n-1-absorbing
primary ideal of R/I.

(2) Let S be a multiplicatively closed subset of R. If I is an n-1-absorbing primary
ideal of R with I ∩S =∅, then IS is an n-1-absorbing primary ideal of RS.

Proof.
(1) Consider the natural homomorphism π : R → R/I, defined by π(x) = x+ I for

each x ∈ R. Then (1) is obtained by Theorem 6 (2).
(2) Consider the injection i : S → R, defined by i(x) = x for each x ∈ S. Then, the

result follows by Theorem 6 (2).
□

The converse of Corollary 3 (2) is not true generally. See the following example:

Example 4. Let R = Z and I = p1 p2Z for some distinct prime numbers p1, p2.
One can see that I is not an n-1-absorbing primary ideal since pn

1 p2 ∈ I, pn
1 /∈ I and
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p2 /∈
√

I = I. Let S = R− p1Z. Thus, we get IS = (p1Z)S is a prime ideal of RS and
so IS is an n-1-absorbing primary ideal of RS.

Corollary 4. Let S be a multiplicatively closed subset of R, and I be a proper ideal
of R. If IS is an n-1-absorbing primary ideal of RS and S∩ZI(R) = ∅, then I is an
n-1-absorbing primary ideal of R.

Proof. Let x1 · · ·xn+1 ∈ I for some non-units x1, . . . ,xn ∈ R. Then x1···xn+1
1 =

x1
1 · · · xn+1

1 ∈ IS. By the assumption, we obtain that either x1
1 · · · xn

1 ∈ IS or xn+1
1 ∈√

IS = (
√

I)S. If x1···xn
1 = x1

1 · · · xn
1 ∈ IS, there is a u ∈ S such that ux1 · · ·xn ∈ I. Since

u /∈ ZI(R), we have x1 · · ·xn ∈ I. Now, we suppose that xn+1
1 ∈ (

√
I)S. Then, there is

a v ∈ S such that vxn+1 ∈
√

I and so (vxn+1)
m ∈ I for some positive integer m. Since

vm /∈ ZI(R), we have xm
n+1 ∈ I and thus, we have xn+1 ∈

√
I, which implies that I is

an n-1-absorbing primary ideal of R. □

Definition 2. Let I be an n-1-absorbing primary ideal of a ring R. We know that
P =

√
I is a prime ideal of R. Thus, I is defined as a P-n-1-absorbing primary ideal

of R.

Using the definition, we give the following theorem:

Theorem 7. Let I1, . . . , Im be P-n-1-absorbing primary ideals of a ring R and I =⋂m
i=1 Ii. Then, I is a P-n-1-absorbing primary ideal of R.

Proof. Note that
√

I = P. Let x1 · · ·xn+1 ∈ I and x1 · · ·xn /∈ I for some non-units
x1, . . . ,xn+1 ∈ R. Without loss of generality, we suppose that x1 · · ·xn /∈ Ik for some
k ∈ {1,2, . . . ,m}. Since Ik is an n-1-absorbing primary ideal, then xn+1 ∈

√
Ik = P.

So, it implies that I is a P-n-1-absorbing primary ideal. □

Let I1 and I2 be n-1-absorbing primary ideals of a ring. However, when
√

I1 ̸=
√

I2,
I1 ∩ I2 might not be an n-1-absorbing primary ideal of R. For that reason, we give the
following basic example.

Example 5. Consider the ideals I1 = (2) and I2 = (3) of the ring Z. The ideals I1
and I2 are 2-1-absorbing primary ideals of Z but I1 ∩ I2 = (6) is not a 2-1-absorbing
primary ideal since 2 ·2 ·3 ∈ (6), 2 ·2 /∈ (6) and 3 /∈

√
(6).

Recall that a proper ideal of a commutative ring is irreducible if it cannot be stated
as an intersection of two ideals properly containing it. Then, we can give the follow-
ing theorem:

Theorem 8. Let I be an irreducible ideal of a ring R. Then, I is an n-1-absorbing
primary ideal of R if and only if (I :R yn−1) = (I :R yn) for all y ∈ R−

√
I.

Proof.
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(⇒): Let I be an n-1-absorbing primary ideal of R and y ∈ R−
√

I. It is obvious
that (I :R yn−1) ⊆ (I :R yn). So, we assume x ∈ (I :R yn). Then, xyn ∈ I and
since y /∈

√
I, then xyn−1 ∈ I and so x ∈ (I :R yn−1). Thus, (I :R yn−1) = (I :R

yn).
(⇐): Let (I :R yn−1) = (I :R yn) for all y ∈ R−

√
I and x1 · · ·xn+1 ∈ I for some

non-units x′i s of R. Assume that x1 · · ·xn /∈ I and xn+1 /∈
√

I. By the as-
sumption, we get (I :R xn−1

n+1) = (I :R xn
n+1). Note that I ⊆ (I + xn−1

n+1R)∩ (I +
x1 · · ·xnR). Suppose a ∈ (I+xn−1

n+1R)∩(I+x1 · · ·xnR). Then, a = i+r1xn−1
n+1 =

j+r2x1 · · ·xn for some i, j ∈ I. Since axn+1 = i+r1xn
n+1 = j+r2x1 · · ·xn ·xn+1,

then r1xn
n+1 = axn+1 − ixn+1 ∈ I and so r1 ∈ (I : Rxn

n+1) = (I : Rxn−1
n+1). Thus

a = i+ r1xn−1
n+1 ∈ I as r1xn−1

n+1 ∈ I. Therefore, we get I = (I + xn−1
n+1R)∩ (I +

x1 · · ·xnR). Since I is an irreducible ideal, then either I = (I + xn−1
n+1R) or

I = (I + x1 · · ·xnR) and so xn−1
n+1 ∈ I, that is xn+1 ∈

√
I, or x1 · · ·xn ∈ I. It leads

to a contradiction. So we omit the claim ” x1 · · ·xn /∈ I and xn+1 /∈
√

I. Thus,
it must be x1 · · ·xn ∈ I or xn+1 ∈

√
I. Hence, I is an n-1-absorbing primary

ideal of R.

□

Theorem 9. Let S = R×R′ be a decomposable ring and I = I × I′ be an ideal
of S. Then J = I × I′ is an n-1-absorbing primary ideal of S if and only if I is an
n-1-absorbing primary ideal of R and I′ = R′ or I′ is an n-1-absorbing primary ideal
of R′ and I = R.

Proof.

(⇒): Assume that J = I × I′ is an n-1-absorbing primary ideal of S. By The-
orem 1(4), we have

√
I × I′ =

√
I ×

√
I′ which is a prime ideal of S. Thus√

I = R or
√

I′ = R′ and so I = R or I′ = R′. Assume that I′ = R′. Let
x1 · · ·xn+1 ∈ I for some non-units x1, . . . ,xn+1 ∈ R. Then (x1,0) · · ·(xn+1,0) ∈
I× I′ and I× I′ is an n-1-absorbing primary ideal of S and so (x1,0) · · ·(xn,0)
∈ I × I′ or (xn+1,0) ∈

√
I × I′ =

√
I ×

√
I′. Therefore, x1 · · ·xn ∈ I or xn+1 ∈√

I. It implies that I is an n-1-absorbing primary ideal of R. In this case
I = R, by a similar argument we can show that I′ is an n-1-absorbing primary
ideal of R′.

(⇐): Now, we assume that I is an n-1-absorbing primary ideal of R and I′ = R′.
Let (x1,y1) · · ·(xn+1,yn+1)∈ J = I×R. Then x1 · · ·xn+1 ∈ I and since I is a n-
1-absorbing primary, then x1 · · ·xn ∈ I or xn+1 ∈

√
I. Thus (x1,y1) · · ·(xn,yn)∈

J = I × R′ or (xn+1,yn+1) ∈
√

J =
√

I × R′ and so J is an n-1-absorbing
primary ideal of R and I′ = R′. The other case is similar.

□
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Theorem 10. Let S = R1×·· ·×Rk be a decomposable ring and I = I1×·· ·× Ik be
an ideal of S, where (k ≥ 2). Then, J = I1 × I2 ×·· ·× Ik is an n-1-absorbing primary
ideal of S if and only if there exists i, where 1 ≤ i ≤ n that Ii is an n-1-absorbing
primary ideal of Ri and I j = R j, for all i ̸= j.

Proof. Assume that J is an n-1-absorbing primary ideal of S. We prove the claim
by induction on k. Let k = 2. Then the result follows the Theorem 9. Now assume
that k ≥ 2 and the conclusion is true for all positive integer t < k. Let S = R1 ×
R2 ×·· ·×Rk and J = I1 × I2 ×·· ·× Ik is an n-1-absorbing primary ideal of R. Then,√

J =
√

I1 × I2 ×·· ·× Ik−1 ×
√

Ik. Thus
√

I1 × I2 ×·· ·× Ik−1 = R1 ×R2 ×·· ·×Rk−1
or

√
Ik = Rk. We conclude that the first case is done, and the case follows the induc-

tion. The converse is similar of the proof of Theorem 9. □

3. n-1-ABSORBING PRIMARY IDEALS ON SOME SPECIAL RINGS

In this section, we characterize some special rings that admit an n-1-absorbing
primary ideals: We determine the conditions for a ring R that admits an n-1-absorbing
primary to be a quasi local ring. Moreover, we classify the quasi local rings that
admit an n-1-absorbing primary ideals. We provide the results with some example.
Afterwards, we classify a ring R which admits n-1-absorbing primary ideals to be a
chaind ring, a divided ring, a valuation domain, and a Dedekind domain. We present
the results providing some examples.

Theorem 11. Assume that I is an n-1-absorbing primary ideal of R that is not an
(n−1)-1-absorbing primary. Then R is a quasi local ring.

Proof. Assume that I is an n-1-absorbing primary ideal of R that is not an
(n−1)-1-absorbing primary. Then, there are some non-units x1, . . . ,xn ∈ R such that
x1 · · ·xn ∈ I, x1 · · ·xn−1 /∈ I and xn /∈

√
I. Let y be a non-unit in R. Then yx1 · · ·xn ∈ I

and so yx1 · · ·xn−1 ∈ I since I is an n-1-absorbing primary ideal and xn /∈
√

I. Con-
sider a unit element u of R. Suppose that y+ u is not a unit in R. Then, we have
(y+ u)x1 · · ·xn ∈ I and thus, (y+ u)x1 · · ·xn−1 = yx1 · · ·xn−1 + ux1 · · ·xn−1 ∈ I since
xn /∈

√
I. Hence, ux1 · · ·xn−1 ∈ I and so x1 · · ·xn−1 ∈ I, which implies a contradiction.

Therefore, y+ u is a unit element in R and thus, R is a quasi local ring [3, Lemma
1]. □

By Theorem 11, we give the following corollary:

Corollary 5. Let a ring R be not a quasi local ring. Then, a proper ideal I of R is
an n-1-absorbing primary ideal if and only if I is a primary ideal.

Theorem 12. Let R be a Noetherian integral domain (not a field) and I a proper
ideal of R. Then the following statements are equivalent:

(1) R is a Dedekind domain.
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(2) I is an n-1-absorbing primary ideal of R if and only if I = Pm for some prime
ideal P of R and some positive integer m.

Proof.
(1)⇒ (2): Assume that I is an n-1-absorbing primary ideal of R. By Theorem

1 (4),
√

I = P is a non-zero prime ideal. By assumption ”R is a Dedekind
domain”, we get that P is maximal and thus, P is primary. Consequently,
I = Pm for some positive integer m by [5, Theorem 6.20]. Now, assume the
converse holds, that is, I = Pm for some prime ideal P of R and some positive
integer m. Then, we obtain that P is maximal since R is a Dedekind domain.
Thus, I is primary and so I is an n-1-absorbing primary ideal.

(2 ⇒ (1): Assume that a non-zero ideal I of R is an n-1-absorbing primary ideal
if and only if I = Pm for some prime ideal P of R and some positive integer
m. Let M be a maximal ideal of R. Assume that there is an ideal J of R such
that M2 ⊂ J ⊂ M. Then J is a primary ideal. By assumption, J is an n-1-
absorbing primary ideal. From (2), we get J = Mm for some positive integer
m, a contradiction. Because there doesn’t exist such an ideal between M2 and
M. By [5, Theorem 6.20], R is a Dedekind domain.

□

We have the following result by Theorem 12 since a principal ideal domain is a
Dedekind domain.

Corollary 6. Let R be a principal ideal domain. Then, a non-zero proper ideal I
of R is an n-1-absorbing primary ideal if and only if I = pm for some prime element
p of R and some positive integer m.

We prove the following theorems that allow us to give some examples of n-1-
absorbing primary ideals of R.

Theorem 13. Let R be a quasi local domain with a maximal ideal M. Assume x is
a prime element of R and xR ⊂ M. Then, xn−1M is an n-1-absorbing primary ideal
of R which is not an (n−1)-1-absorbing primary ideal.

Proof. We consider the non-unit elements x1,x2, . . . ,xn+1 ∈ R, x1x2 · · ·xn+1 ∈
xn−1M and x1x2 · · ·xn ̸∈ xn−1M. If x ̸ |xi for all 1 ≤ i ≤ n, then x | xn+1 and so
xn+1 ∈ xR =

√
xn−1M, it follows that xn−1M is an n-1-absorbing primary. Thus, we

assume that xk|x1x2 · · ·xn and xk+1 ̸ |x1x2 · · ·xn for some integer k. Since R is a domain
and quasi local, we have k < n−1. Hence, x1x2 · · ·xn = xkz for some z ∈ R that x ̸ |z.
Then, we have x1x2 · · ·xn+1 ∈ xn−1M and so x1x2 · · ·xn+1 = xn−1a for some a ∈ M.
Therefore, xn−1a = xkzxn+1. Thus xk(zxn+1 − xn−k−1a) = 0. Since R is a domain, we
conclude that zxn+1 = xn−k−1a and so x|zxn+1 and then x|xn+1. Therefore xn−1M is
an n-1-absorbing primary ideal of R. So xn−1M is n-1-absorbing primary. Now, we
show that xn−1M is not an (n−1)-1-absorbing primary ideal: Let m ∈ M \ xR. Then
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xn−1m ∈ xn−1M when xn−1 ̸∈ xn−1M and m ̸∈ xR =
√

xn−1M. Thus, xn−1M is not an
(n−1)-1-absorbing primary ideal. □

Theorem 14. Let (R,M) be a quasi local. Assume that P ⊆ M is a prime ideal of
R and (PiM : a) = Pi−1M for all positive integer i and a ∈ P−Pi−1. Then Pi−1M is
an i-1-absorbing primary ideal of R.

Proof. We prove by induction on i. Let i = 2. Then, Theorem 8 in [3] im-
plies that PM is a 2-1-absorbing primary ideal of R. Assume that the claim is
true for all positive integer< i. Then, Pi−2M is (i− 1)-1-absorbing primary ideal
of R. We show that Pi−1M is i-1-absorbing primary ideal of R. Let the non-unit
elements x1,x2, . . . ,xi+1 ∈ R, x1x2 · · ·xi+1 ∈ Pi−1M and xi+1 ̸∈ P =

√
Pi−1M. Since

x1x2 · · ·xi+1 ∈ Pi−1M ⊆ P and P is a prime ideal of R, we conclude that xk ∈ P for
some 1 ≤ k ≤ i. Without loss of the generality we can assume x1 ∈ P. If x1 ∈ Pi−1,
then x1x2 · · ·xi ∈ Pi−1M and so Pi−1M is an i-1-absorbing primary ideal of R. Then,
suppose that x1 ∈ P−Pi−1. Then by the assumption, we obtain (Pi−1M : a) = Pi−2M.
Thus, x2 · · ·xi+1 ∈ Pi−2M and by induction Pi−2M is an (i− 1)-1-absorbing primary
ideal of R. Then x2 · · ·xi ∈ Pi−2M. Therefore, x1x2 · · ·xi ∈ PPi−2M = Pi−1M implies
the proof. □

Example 6. Let S = F [x,y,z], where F is a field. Consider M = (x,y,z)S and
R = SM. It can be seen that R is a quasi local ring with maximal ideal MM. Let
P = (x/1,y/1)S and I = P2MM. It is easy to see that we have (P2M : f ) = PM for all
f ∈ P. Thus I is a 3-1-absorbing primary ideal of R by Theorem 14.

Example 7. Let R = F [x,y], where F is a field. Therefore R is a domain. Let
S = R− (x,y)R. Then S−1R is a quasi local domain. x/1 is an irreducible element
of S. Then we Consider that I = xn−1

1 S−1(x,y). So, Theorem 13 implies that I is an
n-1-absorbing primary ideal and that is not an (n−1)-1-absorbing primary.

Note that
√

I = x
1 S−1R and it is a prime ideal of S−1R and then it becomes an n-

1-absorbing prime ideal for all n ≥ 1. While it is not k-1-absorbing primary ideal for
k = 1,2, . . . ,n−1. It shows that the converse of Theorem 1(4) is not correct.

An ideal I of a ring R is called as semi-primary if
√

I is prime ideal. A semi-
primary ideal may not be a primary ideal ( See [7, p.154]).

Theorem 15. Let I be an n-1-absorbing primary ideal of a ring R. Then I is a
semi-primary ideal.

Proof. Let xy ∈
√

I and x /∈
√

I for some x,y ∈ R. Then there exists a positive
ineteger k such that xkyk ∈ I and also xm /∈ I for all positive integer m. Assume k ≤ n.
Then we get xnyn = x · · · x · yn ∈ I and since x · · · x = xn /∈ I, then yn ∈

√
I, that is,

y ∈
√

I. Now, assume k ≥ n. We have x · · ·x︸ ︷︷ ︸
n−1 times

xk−n+1yk ∈ I. Since x · · ·x︸ ︷︷ ︸
n−1 times

xk−n+1 /∈ I,

then yk ∈
√

I and so y ∈
√

I. Therefore,
√

I is prime and thus I is semi-primary. □
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Theorem 16. Let R be a Dedekind domain and I be a proper ideal of R. Then I is
an n-1-absorbing primary ideal if and only if

√
I is prime ideal.

Proof.
(⇒): It is obvious, by Theorem 1(4).
(⇐): Assume that I is a semi-primary ideal of R, namely,

√
I is a prime ideal.

We know that every nonzero prime ideal of R is maximal since R is a Dede-
kind domain. Hence,

√
I is a maximal ideal and so I is a primary ideal.

Therefore, I is an n-1-absorbing primary ideal.
□

Theorem 17. Let R be a divided ring and I a proper ideal of R. Then, I is an
n-1-absorbing primary ideal of R if and only if I is a primary ideal of R.

Proof. The part ”if I is a primary ideal of R, then I is an n-1-absorbing primary
ideal” is straightforward. Thus, we assume that I is an n-1-absorbing primary ideal
of R. Let xy ∈ I and x /∈

√
I for some x,y ∈ R. x and y might be accepted as non-units

of R. Since
√

I is prime, then y ∈
√

I and ym /∈
√

I for all positive integers m, and
then, yn−1 /∈

√
I. As R is a divided ring, then

√
I ⊂ (xn−1)R. Hence, y ∈ (xn−1)R and

so, there is an element r in R with y = rxn−1 since y ∈
√

I. Since I is n-1-absorbing
primary ideal , xy = xrxn−1 ∈ I and x /∈

√
I, then rxn−1 ∈ I and so y ∈ I. Therefore, I

is a primary ideal of R. □

A ring R is called as chained ring if a|b or b|a for every a,b ∈ R. Note that every
chained ring is divided. Thus, we give the following corollary as a result of Theorem
17:

Corollary 7. Let R be a chain ring and I a proper ideal of R. Then, I is an n-1-
absorbing primary ideal of R if and only if I is a primary ideal of R.

Recall that an integral domain R is a valuation domain if R is a chained ring and
then we obtain that any valuation domain is a divided domain.

Theorem 18. Let I be a proper ideal of a valuation domain R with
√

I = P. Then,
the following are equivalent:

(1) I is an n-1-absorbing primary ideal of R.
(2) I is a primary ideal of R.
(3) I = Pm for some positive integer m ≥ 1 where P ̸= P2.

Proof. Firstly, note that
√

I = P is a prime ideal of R.
(1)⇒ (2): By Theorem 17, It is trivial.
(2)⇒ (3): By [5, Theorem 5.11], we have obviously the result.
(3)⇒ (1): By [3, Theorem 11], It is obvious.

□
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Let M be an R-module. The idealization defined by R(+)M = {(a,m) : a ∈ R,m ∈
M}. Assume that a1,a2 ∈ R and m1,m2 ∈ M, then R(+)M is a commutative ring by
the addition operator (a1,m1)+(a2,m2) = (a1 +a2,m1 +m2) and the multiplication
operator (a1,m1)(a2,m2) = (a1a2,a2m1 + a1m2). Let I be an ideal of R and N be a
submodule of M. Then I(+)N is an ideal of R(+)M if and only if IM ⊆ N, this ideal
is called homogeneous. For more properties of the idealization refer to [1].

Theorem 19. Assume that I(+)N is a homogeneous ideal of R(+)M. Then
(1) If I(+)N is an n-1-absorbing primary ideal of R(+)M, then I is an n-1-

absorbing primary ideal of R.
(2) If

√
IM ⊆ N, (N :M a) = N for all a ̸∈

√
I and I is an n-1-absorbing primary

ideal of R, Then I(+)N is an n-1-absorbing primary ideal of R(+)M.

Proof.
(1) Let I(+)N be an n-1-absorbing primary ideal of R(+)M. Assume that

a1, . . . ,an+1 ∈ R and a1 · · ·an+1 ∈ I. Then (a1,0) · · ·(an+1,0) ∈ I(+)N and
therefore (a1,0) · · ·(an,0) = (a1 · · ·an,0) ∈ I(+)N or (an+1,0) ∈

√
I(+)N =√

I(+)N. Thus a1 · · ·an ∈ I or an+1 ∈
√

I. It implies that I is an n-1-absorbing
primary ideal of R.

(2) Assume that
√

IM ⊆ N, (N :M a) = N for all a ̸∈
√

I and I is an n-1-absorbing
primary ideal of R. Let (a1,m1) · · · ,(an+1,mn+1)∈ I(+)N for some elements
a1, · · · ,an+1 ∈ R and m1 · · ·mn+1 ∈ I. It implies that

a1 · · ·an+1 ∈ I, ∑
n+1
i=1 a1 · · · âi · · ·an+1mi ∈ N.

Then we have a1 · · ·an ∈ I or an+1 ∈
√

I. Firstly, we assume that an+1 ∈
√

I,
then ak

n+1 ∈ I for some integer k. Therefore (an+1,mn+1)
(k+1) = (a(k+1)

n+1 ,(k+
1)ak

n+1mn+1) ∈ I(+)N. It means that (an+1,mn+1) ∈
√

I(+)N. Thus, we
assume that an+1 ̸∈

√
I. Then a1 · · ·an ∈ I implies that a1 · · ·anmn+1 ∈ IM ⊆

N. Hence ∑
n
i=1 a1 · · · âi · · ·anan+1mi ∈ N and so ∑

n
i=1 a1 · · · âi · · ·anmi ∈ N :

an+1. Now, since N : an+1 = N, we conclude that ∑
n
i=1 a1 · · · âi · · ·anmi ∈ N.

It shows that (a1,m1) · · · ,(an,mn) ∈ I(+)N and therefore I(+)N is an n-1-
absorbing primary ideal of R(+)M.

□
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