SOME PROPERTIES OF r-SUPPLEMENTED MODULES

CELIL NEBIYEV AND NURHAN SÖKMEZ

Received 03 June, 2022

Abstract. In this work, r-supplemented modules are defined and some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of an r-supplemented module are r-supplemented. Let M be an R-module and $M = M_1 + M_2 + ... + M_n$. If M_i is r-supplemented for each i = 1, 2, ..., n, then M is also r-supplemented. Let M be an r-supplemented module. Then every finitely M-generated R-module is r-supplemented.

2010 Mathematics Subject Classification: 16D10; 16D70

Keywords: small submodules, radical, r-small submodules, supplemented modules

1. Introduction

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be a ring and M be an R-module. We will denote a submodule N of M by $N \le M$. Let M be an R-module and $N \le M$. If L = M for every submodule L of M such that M = N + L, then N is called a *small* submodule of M and denoted by $N \ll M$. Let M be an R-module. M is called a *hollow* module if every proper submodule of M is small in M. M is said to be *local* if M has the largest submodule, i.e. a proper submodule which contains all other proper submodules. Let M be an R-module and $U, V \le M$. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a *supplement* of U in M. M is called a *supplemented* module if every submodule of M has a supplement in M. Let M be an R-module and $M \le M$. If for every M such that M = M + V, M has a supplement M is called an M has ample supplements in M. If every submodule of M has ample supplements in M, then M is called an *amply supplemented* module. The intersection of maximal submodules of an M-module M is called the M and denoted by M and M. If M have no maximal submodules, then we denote M and denoted by M and M have no maximal submodules, then we denote M and M has a M-module and M. If M have no maximal submodules,

© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC

and $U \cap V \leq RadV$, then V is called a *generalized* (radical) supplement (briefly, Radsupplement) of U in M. M is said to be *generalized* (radical) supplemented (briefly, Rad-supplemented) if every submodule of M has a Rad-supplement in M. Let M be an R-module and $K \leq M$. If $K \ll RadM$, then K is called an r-small submodule of M and denoted by $K \ll_r M$. Let M be an R-module. It is defined the relation ' β^* ' on the set of submodules of an R-module M by $X\beta^*Y$ if and only if Y + K = M for every $K \leq M$ such that X + K = M and X + T = M for every $T \leq M$ such that Y + T = M. Let M be an R-module and $K \leq V \leq M$. We say V lies above K in M if $V/K \ll M/K$.

More informations about (amply) supplemented modules are in [2, 3, 8, 9]. More results about Rad-supplemented modules are in [7]. The definition of r-small submodules and some properties of them are in [4, 5]. The definition of β^* relation and some properties of this relation are in [1].

Lemma 1. *Let M be an R -module. The following assertions hold.*

- (i) If $K \ll_r M$, then $K \ll M$.
- (ii) If $L \ll_r M$ and $K \leq L$, then $K \ll_r M$.
- (iii) If $K \ll_r L \leq M$, then $K \ll_r M$.
- (iv) If $K_i \ll_r L_i \leq M$ for i = 1, 2, ..., n, then $K_1 + K_2 + ... + K_n \ll_r L_1 + L_2 + ... + L_n$.
- (v) If $K_i \ll_r M$ for i = 1, 2, ..., n, then $K_1 + K_2 + ... + K_n \ll_r M$.
- (vi) If $K \ll_r M$, then $(K+L)/L \ll_r M/L$ for every $L \leq M$.
- (vii) If $K \ll M$ and RadM is a supplement submodule in M, then $K \ll_r M$.
- (viii) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. If $K \ll_r M$, then $f(K) \ll_r f(M)$.
- (ix) $Rad(RadM) = \sum_{K \ll_r M} K$.

Proof. See [4,5].

2. R-SUPPLEMENTED MODULES

Definition 1. Let M be an R-module and $U, V \le M$. If M = U + V and $U \cap V \ll_r V$, then V is called an r-supplement of U in M. If every submodule of M has an r-supplement in M, then M is called an r-supplemented module. (See also [6])

Clearly we can see that every r-supplemented module is supplemented. But the converse is not true in general (See Example 1).

Lemma 2. Let V be a Rad-supplement of U in M. Then V is an r-supplement of U in M if and only if RadV is a supplement of U in U + RadV.

Proof.

(\Longrightarrow) Let V be an r-supplement of U in M. Then $U \cap V \ll RadV$ and $U \cap RadV = U \cap V \cap RadV \ll RadV$. Hence RadV is a supplement of U in U + RadV.

(\iff) Let RadV be a supplement of U in U + RadV. Since V is a Rad-supplement of U in M, M = U + V and $U \cap V \leq RadV$. Then $U \cap V = U \cap V \cap RadV = U \cap RadV$. Since RadV is a supplement of U in U + RadV, $U \cap RadV \ll RadV$. Hence $U \cap V = U \cap RadV \ll RadV$ and $U \cap V \ll_r V$. Therefore, V is an V-supplement of U in M.

Corollary 1. Let V be an r-supplement of U in M. Then $Rad(RadV) = RadV \cap Rad(U + RadV)$.

Proof. Since V is an r-supplement of U in M, by Lemma 2, RadV is a supplement of U in U + RadV. Then by [8, 41.1 (5)], $Rad(RadV) = RadV \cap Rad(U + RadV)$, as desired.

Lemma 3. Let V be an r-supplement of U in M and $U\beta^*X$ in U + RadV with $X \le U + RadV$. Then V is an r-supplement of X in M.

Proof. Since V is an r-supplement of U in M, by Lemma 2, RadV is a supplement of U in U + RadV. Since $U\beta^*X$ in U + RadV, by [1, Theorem 2.6 (ii)], RadV is a supplement of X in U + RadV. Here X + RadV = U + RadV and $X \cap RadV \ll RadV$. Hence RadV is a supplement of X in X + RadV. Let N = U + RadV and U + K = M with $K \le M$. Since U + K = M, $N = N \cap M = N \cap (U + K) = U + N \cap K$ and since $U\beta^*X$ in $N, X + N \cap K = N$. Here $X + K = X + N \cap K + K = N + K = U + N \cap K + K = U + K = M$. Interchanging the roles of U and X, we can see that U + T = M for every $T \le M$ with X + T = M. Hence $U\beta^*X$ in M. Since V is an r-supplement of U in M, V is a supplement of U in U and since $U\beta^*X$ in U, by [1, Theorem 2.6 (ii)], U is a supplement of U in U. Then U is a Rad-supplement of U in U and since U is an r-supplement of U in U.

Corollary 2. Let V be an r-supplement of U in M and U lies above X in U + RadV. Then V is an r-supplement of X in M.

Proof. Clear from Lemma 3.

Lemma 4. Let V be a supplement of U in M. If RadV is a supplement submodule in V, then V is an r-supplement of U in M.

Proof. Since V is a supplement of U in M, M = U + V and $U \cap V \ll V$. Since RadV is a supplement submodule in V, by Lemma 1, $U \cap V \ll_r V$. Hence V is an r-supplement of U in M, as desired.

Corollary 3. Let V be a supplement of U in M. If RadV is a is direct summand of V, then V is an r-supplement of U in M.

Proof. Since RadV is a direct summand of V, RadV is a supplement submodule in V. Then by Lemma 4, V is an V-supplement of U in M.

Corollary 4. Let V be a supplement of U in M. If RadV is a supplement submodule in M, then V is an r-supplement of U in M.

Proof. Let RadV be a supplement of X in M. Then M = X + RadV and $X \cap RadV \ll RadV$. Since M = X + RadV, by Modular law, $V = V \cap M = V \cap (X + RadV) = V \cap X + RadV$ and since $V \cap X \cap RadV = X \cap RadV \ll RadV$, RadV is a supplement of $V \cap X$ in V. Then by Lemma 4, V is an V-supplement of V in V.

We can also prove this Corollary 4 as follows:

Proof. Since V is a supplement of U in M, M = U + V and $U \cap V \ll V$. Then $U \cap V \leq RadV$ and $U \cap V \ll M$. Since RadV is a supplement submodule in M, by [8, 41.1 (5)], $U \cap V = U \cap V \cap RadV \ll RadV$. Hence $U \cap V \ll_r V$ and V is an r-supplement of U in M.

Corollary 5. Let V be a supplement of U in M. If RadV is a is direct summand of M, then V is an r-supplement of U in M.

Proof. Clear from Corollary 4.

Lemma 5. Let M be a supplemented module. If RadV is a supplement submodule in V for every supplement submodule V in M, then M is r-supplemented.

Proof. Let $U \le M$. Since M is supplemented, U has a supplement V in M. By hypothesis, RadV is a supplement submodule in V. Then by Lemma 4, V is an r-supplement of U in M. Hence M is r-supplemented, as desired.

Corollary 6. Let M be a supplemented module. If RadV is a direct summand of V for every supplement submodule V in M, then M is r-supplemented.

Proof. Clear from Lemma 5.

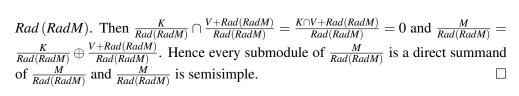
Proposition 1. Let M be an r-supplemented module. Then RadM is a supplement submodule in M.

Proof. Since M is r-supplemented, RadM has an r-supplement V in M. Here M = RadM + V and $V \cap RadM \ll_r V$. Since $V \cap RadM \ll_r V$, $V \cap RadM \ll RadV \leq RadM$. Hence RadM is a supplement of V in M.

Remark 1. The converse of Proposition 1 is not true in general. Consider the \mathbb{Z} -module $\mathbb{Z}\mathbb{Q}$. Since $Rad_{\mathbb{Z}}\mathbb{Q} =_{\mathbb{Z}}\mathbb{Q}$, $Rad_{\mathbb{Z}}\mathbb{Q}$ is a supplement submodule in $\mathbb{Z}\mathbb{Q}$. But $\mathbb{Z}\mathbb{Q}$ is not r-supplemented.

Proposition 2. Let M be an r-supplemented module. Then M/Rad(RadM) is semisimple.

Proof. Let $\frac{K}{Rad(RadM)}$ be any submodule of $\frac{M}{Rad(RadM)}$. Since M is r-supplemented, K has an r-supplement V in M. Then M = K + V and $K \cap V \ll_r V$. Since M = K + V, $\frac{M}{Rad(RadM)} = \frac{K}{Rad(RadM)} + \frac{V + Rad(RadM)}{Rad(RadM)}$. Since $K \cap V \ll_r V$, by Lemma 1, $K \cap V \leq$



Lemma 6. Let M be an R-module, $U \le M$ and $M_1 \le M$. If X is an r-supplement of $U + M_1$ in M and Y is an r-supplement of $(U + X) \cap M_1$ in M_1 , then X + Y is an r-supplement of U in M.

Proof. Since X is an r-supplement of $U+M_1$ in M, $M=U+M_1+X$ and $X\cap (U+M_1)\ll_r X$. Since Y is an r-supplement of $(U+X)\cap M_1$ in $M_1,M_1=(U+X)\cap M_1+Y$ and $(U+X)\cap Y=(U+X)\cap M_1\cap Y\ll_r Y$. Then $M=U+M_1+X=U+X+(U+X)\cap M_1+Y=U+X+Y$ and $U\cap (X+Y)\leq (U+X)\cap Y+(U+Y)\cap X\leq (U+M_1)\cap X+(U+X)\cap Y\ll_r X+Y$. Hence X+Y is a r-supplement of U in M. \square

Lemma 7. Let M be an R-module, $U \le M$ and $M_1 \le M$. If M_1 is r-supplemented and $U + M_1$ has an r-supplement in M, then U has an r-supplement in M.

Proof. Clear from Lemma 6.

Corollary 7. Let M be an R-module, $U \le M$ and $M_i \le M$ for i = 1, 2, ..., n. If M_i is r-supplemented for every i = 1, 2, ..., n and $U + M_1 + M_2 + ... + M_n$ has an r-supplement in M, then U has an r-supplement in M.

Proof. Clear from Lemma 7.

Lemma 8. Let $M = M_1 + M_2$. If M_1 and M_2 are r-supplemented, then M is also r-supplemented.

Proof. Let $U \le M$. Then 0 is an r-supplement of $U + M_1 + M_2$ in M. Since M_2 is r-supplemented, by Lemma 7, $U + M_1$ has an r-supplement in M. Since M_1 is r-supplemented, by Lemma 7 again, U has an r-supplement in M. Hence M is r-supplemented.

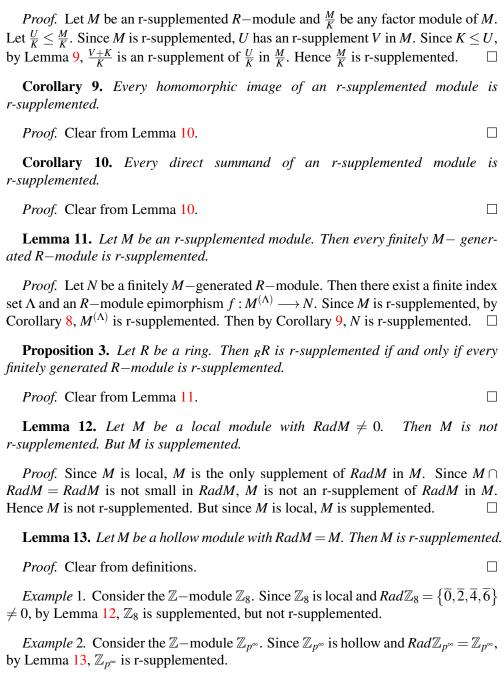
Corollary 8. Let $M = M_1 + M_2 + ... + M_n$. If M_i is r-supplemented for each i = 1, 2, ..., n, then M is also r-supplemented.

Proof. Clear from Lemma 8.

Lemma 9. Let V be an r-supplement of U in M and $K \leq U$. Then $\frac{V+K}{K}$ is an r-supplement of $\frac{U}{K}$ in $\frac{M}{K}$.

Proof. Since V is an r-supplement of U in M, M = U + V and $U \cap V \ll_r V$. Since M = U + V and $K \leq U$, $\frac{M}{K} = \frac{U + V}{K} = \frac{U}{K} + \frac{V + K}{K}$. Since $U \cap V \ll_r V$, by Lemma 1, $\frac{U}{K} \cap \frac{V + K}{K} = \frac{U \cap V + K}{K} \ll_r \frac{V + K}{K}$. Hence $\frac{V + K}{K}$ is an r-supplement of $\frac{U}{K}$ in $\frac{M}{K}$.

Lemma 10. Every factor module of an r-supplemented module is r-supplemented.



Example 3. Consider the \mathbb{Z} -module $M = \mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_5$. Since \mathbb{Z}_5 is simple, \mathbb{Z}_5 is r-supplemented. Since $\mathbb{Z}_{p^{\infty}}$ and \mathbb{Z}_5 are r-supplemented, by Lemma 8, $M = \mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_5$ is r-supplemented. Here $RadM = Rad\mathbb{Z}_{p^{\infty}} \oplus Rad\mathbb{Z}_5 = \mathbb{Z}_{p^{\infty}} \oplus 0 = \mathbb{Z}_{p^{\infty}} \neq M$.

REFERENCES

- [1] G. F. Birkenmeier, F. Takil Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, "Goldie*-supplemented modules." *Glasg. Math. J.*, vol. 52A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212.
- [2] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, *Lifting modules. Supplements and projectivity in module theory.*, ser. Front. Math. Basel: Birkhäuser, 2006.
- [3] C. Nebiyev and A. Pancar, "On supplement submodules." *Ukr. Math. J.*, vol. 65, no. 7, pp. 1071–1078, 2013, doi: 10.1007/s11253-013-0842-2.
- [4] C. Nebiyev and H. H. Ökten, "r-small submodules," in 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA-2020), 2020.
- [5] C. Nebiyev and H. H. Ökten, "Some properties of r-small submodules," *Erzincan University Journal of Science and Technology*, vol. 15, no. 3, pp. 996–1001, 2022, doi: 10.18185/erzifbed.876557.
- [6] C. Nebiyev and N. Sökmez, "r-supplemented modules," in 4th International E-Conference on Mathematical Advances and Applications (ICOMAA-2021), 2021.
- [7] Y. Wang and N. Ding, "Generalized supplemented modules." *Taiwanese J. Math.*, vol. 10, no. 6, pp. 1589–1601, 2006, doi: 10.11650/twjm/1500404577.
- [8] R. Wisbauer, Foundations of module and ring theory. A handbook for study and research., ser. Algebra Log. Appl. Philadelphia etc.: Gordon and Breach Science Publishers, 1991, vol. 3.
- [9] H. Zöschinger, "Komplementierte Moduln über Dedekindringen," J. Algebra, vol. 29, pp. 42–56, 1974, doi: 10.1016/0021-8693(74)90109-4. [Online]. Available: epub.ub.uni-muenchen.de/4100/

Authors' addresses

Celil Nebiyev

(Corresponding author) Ondokuz Mayıs University, Department of Mathematics, Kurupelit, Atakum, Samsun, TURKEY

E-mail address: cnebiyev@omu.edu.tr

Nurhan Sökmez

E-mail address: nurhanozkan82@hotmail.com