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ON MODELS OF THE LIE ALGEBRA K5 AND LAURICELLA
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Abstract. We construct new (n+ 1)-variable models of irreducible representations of the Lie
algebra K5. An n-fold integral transformation is used to obtain a new set of models of K5 in
terms of difference-differential operators. These models are further exploited to obtain recurrence
relations, generating functions and addition theorems.
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1. INTRODUCTION

There is a close connection between models of Lie algebras and identities in spe-
cial function theory. Miller [8] and Vilenkin [19] have developed this connection
systematically from its basics. Manocha [7], Govil and Manocha [3] have studied
this relationship via certain integral transformations thereby obtaining various recur-
rence relations and identities in the theory of special functions. Sahai [11, 12], Sahai
and Srivastava [13] have extended this approach to obtain numerous results in the the-
ory of special functions of one and several variables. The Lie algebras considered for
obtaining these results mainly include the special linear complex algebra sl(2,C), the
oscillator algebra G (0,1) and the 3-dimensional Euclidean algebra T3. In the present
paper, we extend this study to the 5-dimensional Lie algebra K5. We construct new
(n+ 1)-variable models of irreducible representations of K5 in terms of differential
operators. Using an integral transformation, we obtain models of K5 which are ex-
plored for recurrence relations, generating functions and addition theorems. These
results are believed to be new.
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Earlier, notable contributions in relating the Lie algebra K5 and special func-
tions have come from the works of Khan and Ali [6], Pathan et al [9], Srivastava
et al [18] and Yadav and Rani [20]. The multi-variable Lauricella series as well as
their Srivastava-Daoust generalizations are extensively described in the monograph
by Srivastava and Karlsson [16]. Some developments in the usage of Lie algebraic
techniques to study the theory of multi-variable and multi-index Hermite polynomials
have been studied in [2]. Decomposition formulas, linearization problems and cer-
tain interesting properties associated with generalized Lauricella functions also exist
in literature, see [4, 5, 15]. Moreover, the incomplete Lauricella functions and their
associated properties including integral representations, finite summation formulas,
transformation and derivative formulas have been discussed in [1]. Recently, Srivast-
ava [14] has listed some important developments in the theory and applications of
hypergeometric and related functions.

The paper is organized as follows. In Section 2, we give a brief review of the
Lie algebra K5 and its representations R′(ω,m0,µ) and ↑′ω,µ. One variable models of
representations R′(0,m0,µ) and ↑′ω,µ are given following Miller [8]. An r-fold integ-
ral transformation is defined and transforms of certain operator expressions are given
that are needed for our discussion [3]. In Section 3, we give (n+1)-variable models
of representations of K5 in which the representation spaces have basis functions ap-

pearing as 1F0

(
−λ;−;

n
∑

i=1
uixi

)
tλ and 1F0

(
−λ−ω;−;

n
∑

i=1
uixi

)
tλ+ω, respectively.

In Section 4, we obtain the transformed models of Section 3 in terms of difference-
differential operators with basis functions as Lauricella functions F(n)

A and F(n)
D , re-

spectively. Further, we utilize these models to obtain some recurrence relations and
generating functions. Finally, in Section 5, all the models of Sections 3 are utilized
to obtain interesting addition theorems.

2. PRELIMINARIES

The Lie algebra K5 is the Lie algebra of 5-dimensional complex Lie group K5,
given by:

K5 =

g(q,a,b,c,τ) =


1 ceτ be−τ 2a−bc τ

0 eτ 2qe−τ b−2qc 0
0 0 e−τ −c 0
0 0 0 1 0
0 0 0 0 1


∣∣∣∣∣∣∣∣∣∣
q,a,b,c,τ ∈ C

 ,

where the group operation is matrix multiplication [8], satisfying the multiplication
law:

g1(q,a,b,c,τ)g2(q′, a′, b′, c′, τ
′)

= g(q+q′e2τ, a+a′+ eτcb′+ c2q′e2τ, b+b′eτ +2cq′e2τ, c+ c′e−τ, τ+ τ
′), (2.1)
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where q, a, b, c, τ, q′, a′, b′, c′, τ′ ∈ C and g, g1, g2 ∈ K5.
The identity element of K5 is g(0,0,0,0,0) and the inverse of g(q,a,b,c,τ) is

g(−qe−2τ,−a+ bc− c2q,−be−τ + 2cqe−τ,−ceτ,−τ). The 5-dimensional complex
Lie algebra K5 has basis {J 3,J ±,E ,Q} satisfying the commutation relations:[

J 3,J ±]=±J ±,
[
J 3,Q

]
= 2Q,

[
J −,J +

]
= E , (2.2)[

J −,Q
]
= 2J +,

[
J +,Q

]
= 0,[

J ±,E
]
=
[
J 3,E

]
= [Q,E ] = O,

where O is the 5×5 zero matrix.
Let ρ be an irreducible representation of K5 on a vector space V and let

J± = ρ(J ±), J3 = ρ(J 3), E = ρ(E ), Q = ρ(Q)

be operators on V . Clearly, these operators obey the commutation relations identical
to (2.2).

Let S denote the spectrum of J3 and let the irreducible representation ρ satisfies
the following conditions:

(1) Each eigenvalue of J3 has multiplicity equal to one.
(2) There is a enumerable basis for V consisting of all the eigenvectors of J3.

This ensures that S is enumerable and that there exists a basis for V consisting of vec-
tors { fm | m ∈ S} such that J3 fm = m fm. It is well known that the oscillator algebra
G (0,1) is a subalgebra of Lie algebra K5 and an irreducible representation of G (0,1)
satisfying (1)–(2) is isomorphic to one of the irreducible representations R(ω,m0,µ)
or ↑ω,µ of G (0,1). In the following, we study such representations of K5. Indeed, we
have [8].

Theorem 1. Every irreducible representation ρ of K5 is isomorphic to a repres-
entation in the following list:

(1) The representation R′(ω,m0,µ) defined for all ω,m0,µ ∈ C such that µ ̸= 0,
0≤ Rem0 < 1 and ω+m0 is not an integer. The spectrum of J3 is the set
S = {m0 +n : n is an integer}.

(2) The representation ↑′ω,µ defined for all ω,µ∈C such that µ ̸= 0. The spectrum
of J3 is the set S = {−ω+n : n is non-negative integer}.

For each of the above cases, there is a basis of V consisting of vectors { fm | m ∈ S}
such that

J3 fm = m fm, E fm = µ fm, Q fm = µ fm+2,

J+ fm = µ fm+1, J− fm = (m+ω) fm−1. (2.3)

On the right hand side of (2.3), fm = 0 if m ̸∈ S.

One variable models of the irreducible representations of K5 are given by:
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Representation R′(0,m0,µ):

J3 = z
d
dz

, J+ = µz, J− =
d
dz

,

E = µ, Q = µz2, fλ(z) = zλ,

where λ ∈ S = {m0 +n | m0 ∈ C−{0}, 0 ≤ Rem0 < 1, n = 0,±1, . . .}.
Representation ↑′ω,µ:

J3 =−ω+ z
d
dz

, J+ = µz, J− =
d
dz

,

E = µ, Q = µz2, fλ(z) = zλ+ω,

where λ ∈ S = {−ω+n | n = 0,1, . . .}.

2.1. Integral Transformation

Let V be a complex vector space consisting of all analytic functions f (z1, . . . ,zr),
analytic at (z1, . . . ,zr) = (0, . . . ,0). We define

h(βi,γ j,γ,xi) = I [ f (z1, . . . ,zr]

=

(
k

∏
i=1

Γ(γi)

Γ(βi)Γ(γi −βi)

)
Γ(γ)

Γ(βk+1) . . .Γ(βr)Γ
(
γ−∑

m
i=k+1 βi

)
×

∫
. . .

∫
︸ ︷︷ ︸

r− f old

r

∏
i=1

uβi−1
i

k

∏
i=1

(1−ui)
γi−βi−1

(
1−

m

∑
j=k+1

u j

)γ−∑
m
j=k+1 β j−1

× f (z1, . . . ,zr) du1 . . .dur,

where,

zi = uixi, i = 1, . . . ,r;

Reγi > Reβi > 0, i = 1, . . . ,k;

Reβ j > 0, j = k+1, . . . ,m;

Re

(
γ−

m

∑
j=k+1

β j

)
> 0;

and the path of integration is 0 ≤ ui ≤ 1, i = 1, . . . ,k, u j ≥ 0, j = k+ 1, . . . ,m, . . . ,r
and ∑

m
j=k+1 u j ≤ 1 [3]. Then W = IV is an isomorphic image of V under the trans-

formation I : f (z1, . . . ,zr)→ h(βi,γ j,γ,xi). Next, we obtain transforms of certain ex-
pressions under the transformation I in terms of difference operators and differential
operators defined as follows:

Eγih(βi,γi) = h(βi,γi +1),
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Lγih(βi,γi) = h(βi,γi −1),

∆γih(βi,γi) = (Eγi −1)h(βi,γi),

Eβiγih(βi,γi) = Eβi

[
Eγih(βi,γi)

]
,

where h(βi,γi ±1) = h(β1,γ1, . . . ,βi−1,γi−1,βi,γi ±1, . . . ,βr,γr).
We obtain the following transforms under I:

I [ui f ] =


βi
γi

Eβiγi h, 1 ≤ i ≤ k;

βi
γ

Eβiγ h, k+1 ≤ i ≤ m.

I
[

ui
∂

∂ui
f
]
= βi ∆βi h = xi

∂

∂xi
h, 1 ≤ i ≤ r.

Lauricella functions F(n)
A and F(n)

D are defined as follows [17]:

F(n)
A := F(n)

A (a;b1, . . . ,bn; c1, . . . ,cn; z1, . . . ,zn)

=
∞

∑
m1,...,mn=0

(a)m1+···+mn(b1)m1 . . .(bn)mn

(c1)m1 . . .(cn)mn

zm1
1

m1 !
. . .

zmn
n

mn !
, (2.4)

|z1 + · · ·+ zn|< 1;

F(n)
D := F(n)

D (a;b1, . . . ,bn; c; z1, . . . ,zn)

=
∞

∑
m1,...,mn=0

(a)m1+···+mn(b1)m1 . . .(bn)mn

(c)m1+···+mn

zm1
1

m1 !
. . .

zmn
n

mn!
,

|zi|< 1, i = 1, . . . ,n ;

and F(n)
A (a+ i) stands for F(n)

A in (2.4) with a replaced by (a+ i), etc..
The integral representations of Lauricella functions F(n)

A and F(n)
D are given by [3]:

F(n)
A [α;β1, . . . ,βn;γ1, . . . ,γn;x1, . . . ,xn]

=
n

∏
i=1

Γ(γi)

Γ(βi)Γ(γi −βi)

∫ 1

0
. . .

∫ 1

0︸ ︷︷ ︸
n− f old

n

∏
i=1

uβi−1
i (1−ui)

γi−βi−1

× (1−
n

∑
i=1

ui xi)
−αdu1 . . .dun,

Reγi > Reβi > 0, i = 1, . . . ,n, ∑
n
i=1|xi|< 1;

F(n)
D [α;β1, . . . ,βn;γ;x1, . . . ,xn]
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=
n

∏
i=1

Γ(γ)

Γ(βi) Γ(γ−βi)

∫
. . .

∫
︸ ︷︷ ︸

n− f old

n

∏
i=1

uβi−1
i (1−

n

∑
i=1

ui)
γ−∑

n
i=1 βi−1

× (1−
n

∑
i=1

ui xi)
−αdu1 . . .dun,

Reβi > 0, i = 1, . . . ,n; Re(γ−∑
n
i=1 βi) > 0, |xi| < 1, i = 1, . . . ,n; and the path of

integration is ui ≥ 0, i = 1, . . . ,n; ∑
n
i=1 ui ≤ 1.

3. (n+1)-VARIABLE MODELS

Theorem 2. Let u = φ(z) and z = t (1−∑
n
i=1 zi) then z du

dz = t ∂u
∂t and du

dz = ∂u
∂t −

t−1
∑

n
i=1 zi

∂u
∂zi

.

Proof. We have z = t (1−∑
n
i=1 zi), which leads to

∂u
∂t

= (1−
n

∑
i=1

zi)
du
dz

,

∂u
∂zi

=−t
du
dz

, i = 1, . . . ,n.

From this follows the conclusion of the theorem. □

Directed by Theorems 1 and 2, we give below (n+1)-variable models of the rep-
resentations R′(0,m0,µ) and ↑′ω,µ of the Lie algebra K5. Let F be the space of all
analytic and single-valued functions for all zi = ui xi ̸= 1, i = 1,2, . . . ,n and t ̸= 0.
Multiplier representations of the Lie group K5 induced by the J-operators are also
given.

Model IA:
Representation R′(0,m0,µ):

J3 = t
∂

∂t
, J+ = µt (1−

n

∑
i=1

ui xi), J− = t−1

[
t

∂

∂t
−

n

∑
i=1

ui
∂

∂ui

]
,

E = µ, Q = µt2(1−
n

∑
i=1

ui xi)
2, fλ(u1, . . . , un, t) = tλ (1−

n

∑
i=1

ui xi)
λ, (3.1)

where λ ∈ S = {m0 +n | m0 ∈ C−{0}, 0 ≤ Rem0 < 1, n = 0,±1, . . .}.
The multiplier representation T1(g) f of the Lie group K5 induced by the operators

(3.1) on F is

[T1(g) f ](u1, . . . ,un, t) = exp

{
µ

[
qt2(1−

n

∑
i=1

ui xi)
2 +a+bt(1−

n

∑
i=1

ui xi)

]}
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× f
[

u1

(1+ c
t )
, . . . ,

un

(1+ c
t )
, t eτ

(
1+

c
t

)]
, (3.2)

where
∣∣ c

t

∣∣< 1 and g = g(q,a,b,c,τ) ∈ K5.
Model IIA:
Representation ↑′ω,µ:

J3 =−ω+ t
∂

∂t
, J+ = µt (1−

n

∑
i=1

ui xi), J− = t−1

[
t

∂

∂t
−

n

∑
i=1

ui
∂

∂ui

]
,

E = µ, Q = µt2(1−
n

∑
i=1

ui xi)
2, fλ(u1, . . . ,un, t) = tλ+ω (1−

n

∑
i=1

ui xi)
λ+ω, (3.3)

where λ ∈ S = {−ω+n | n = 0,1, . . .}.
The multiplier representation T2(g) f of the Lie group K5 induced by the operators

(3.3) on F is

[T2(g) f ](u1, . . . ,un, t) = exp

{
µ

[
qt2(1−

n

∑
i=1

ui xi)
2 +a+bt(1−

n

∑
i=1

ui xi)

]
−ωτ

}

× f
[

u1

(1+ c
t )
, . . . ,

un

(1+ c
t )
, t eτ

(
1+

c
t

)]
,

where
∣∣ c

t

∣∣< 1 and g = g(q,a,b,c,τ) ∈ K5.

4. TRANSFORMED (n+1)-VARIABLE MODELS OF K5

To obtain models in terms of difference-differential operators with the basis func-
tions appearing as Lauricella functions F(n)

A and F(n)
D respectively, we utilize a the-

orem from Govil and Manocha [3]:

Theorem 3. Let ρ be an irreducible representation of the Lie algebra K5 in
terms of operators

{
J3,J±,E,Q

}
on a representation space V with basis functions

{ fλ | λ ∈ S}. Then the transformation I induces another irreducible representation
σ of K5 on the representation space W = IV having basis functions {hλ | λ ∈ S} in
terms of operators

{
K3,K±,E ′,Q′}, where

K3 = IJ3I−1, K± = IJ±I−1, E ′ = IEI−1, Q′ = IQI−1,

hλ = I fλ, λ ∈ S.

That is, ρ and σ are isomorphic. Indeed, the behavior of the commutation relations
satisfied by K-operators is same as that of J-operators.

We give below the transforms of Models IA and IIA discussed above. The new
models are in terms of difference-differential operators.
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Model IB(i):

K3 = t
∂

∂t
, K+ = µt

(
1−

n

∑
i=1

βi xi

γi
Eβiγi

)
, K− = t−1

(
t

∂

∂t
−

n

∑
i=1

βi ∆βi

)
,

E ′ = µ, Q′ = µt2

(
1−

n

∑
i=1

βi xi
γi

Eβiγi

)2

,

hλ(x1, . . . ,xn, t) = F(n)
A (−λ, β1, . . . ,βn; γ1, . . . ,γn; x1, . . . ,xn) tλ,

where λ ∈ S = {m0 +n | m0 ∈ C−{0}, 0 ≤ Rem0 < 1, n = 0,±1, . . .}.

Model IB(ii):

K3 = t
∂

∂t
, K+ = µt

(
1−

n

∑
i=1

βi xi

γ
Eβiγ

)
, K− = t−1

(
t

∂

∂t
−

n

∑
i=1

βi ∆βi

)
,

E ′ = µ, Q′ = µt2

(
1−

n

∑
i=1

βi xi
γ

Eβiγ

)2

,

hλ(x1, . . . ,xn, t) = F(n)
D (−λ, β1, . . . ,βn; γ; x1, . . . ,xn) tλ,

where λ ∈ S = {m0 +n | m0 ∈ C−{0}, 0 ≤ Rem0 < 1, n = 0,±1, . . .}.

Model IIB(i):

K3 =−ω+ t
∂

∂t
, K+ = µt

(
1−

n

∑
i=1

βi xi

γi
Eβiγi

)
, K− = t−1

(
t

∂

∂t
−

n

∑
i=1

βi ∆βi

)
,

E ′ = µ, Q′ = µt2

(
1−

n

∑
i=1

βi xi
γi

Eβiγi

)2

,

hλ(x1, . . . ,xn, t) = F(n)
A (−λ−ω, β1, . . . ,βn; γ1, . . . ,γn; x1, . . . ,xn) tλ+ω,

where λ ∈ S = {−ω+n | n = 0,1, . . .}.

Model IIB(ii):

K3 =−ω+ t
∂

∂t
, K+ = µt

(
1−

n

∑
i=1

βi xi

γ
Eβiγ

)
, K− = t−1

(
t

∂

∂t
−

n

∑
i=1

βi ∆βi

)
,

E ′ = µ, Q′ = µt2

(
1−

n

∑
i=1

βi xi
γ

Eβiγ

)2

,

hλ(x1, . . . ,xn, t) = F(n)
D (−λ−ω, β1, . . . ,βn; γ; x1, . . . ,xn) tλ+ω,

where λ ∈ S = {−ω+n | n = 0,1, . . .}.
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The models given above satisfy the following:[
K3,K±]=±K±,

[
K3,Q′]= 2Q′,

[
K−,K+

]
= E ′,[

K−,Q′]= 2K+,
[
K+,Q′]= 0,

[
K±,E ′]= [K3,E ′]= [Q′,E ′]= 0,

and thus lead to a representation of K5. Also, Model IB(i), Model IB(ii) satisfy

K3 fλ = λ fλ, K+ fλ = µ fλ+1, K− fλ = λ fλ−1,

E ′ fλ = µ fλ, Q′ fλ = µ fλ+2,

and Model IIB(i), Model IIB(ii) satisfy

K3 fλ = λ fλ, K+ fλ = µ fλ+1, K− fλ = (λ+ω) fλ−1,

E ′ fλ = µ fλ, Q′ fλ = µ fλ+2.

4.1. Recurrence relations and generating functions

We shall be utilizing Models IA and IIA for obtaining generating functions. Trans-
formed Models IB(i), IB(ii) and IIB(i), IIB(ii) are further exploited for obtaining re-
currence relations. To obtain generating functions, we follow the method given in
Sahai [12]. We leave details and present the results only as follows:

4.1.1. Recurrence relations

We obtain the following two term and three term recurrence relations using raising
and lowering operators, respectively of Model IB(i):

F(n)
A −

n

∑
i=1

βi xi

γi
F(n)

A (βi +1, γi +1)−F(n)
A (−λ−1) = 0,

(λ+
n

∑
i=1

βi)F
(n)

A −
n

∑
i=1

βi F(n)
A (βi +1)−λF(n)

A (−λ+1) = 0,

F(n)
A −

n

∑
i=1

2βi xi

γi
F(n)

A (βi +1, γi +1)+
n

∑
j=1

β2
j x2

j

γ2
j

F(n)
A (β j +2, γ j +2)

+ ∑
1≤i ̸= j≤n

(
βi xi

γi

)(
β j x j

γ j

)
F(n)

A (βi +1, γi +1, β j +1, γ j +1)−F(n)
A (−λ−2) = 0,

F(n)
A (−λ−1)−

n

∑
i=1

βi xi

γi
F(n)

A (βi +1, γi +1)+
n

∑
j=1

β2
j x2

j

γ2
j

F(n)
A (β j +2, γ j +2)

+ ∑
1≤i ̸= j≤n

(
βi xi

γi

)(
β j x j

γ j

)
F(n)

A (βi +1, γi +1, β j +1, γ j +1)−F(n)
A (−λ−2) = 0.

Similarly, we obtain the following recurrence relations using Model IB(ii):

F(n)
D −

n

∑
i=1

βi xi

γ
F(n)

D (βi +1, γ+1)−F(n)
D (−λ−1) = 0,
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(λ+
n

∑
i=1

βi)F
(n)

D −
n

∑
i=1

βi F(n)
D (βi +1)−λF(n)

D (−λ+1) = 0,

F(n)
D −

n

∑
i=1

2βi xi

γ
F(n)

D (βi +1, γ+1)+
n

∑
j=1

β2
j x2

j

γ2 F(n)
D (β j +2, γ+2)

+ ∑
1≤i̸= j≤n

(βi xi)(β j x j)

γ2 F(n)
D (βi +1, β j +1, γ j +2)−F(n)

D (−λ−2) = 0,

F(n)
D (−λ−1)−

n

∑
i=1

βi xi

γ
F(n)

D (βi +1, γ+1)+
n

∑
j=1

β2
j x2

j

γ2 F(n)
D (β j +2, γ+2)

+ ∑
1≤i̸= j≤n

(βi xi)(β j x j)

γ2 F(n)
D (βi +1, β j +1, γ+2)−F(n)

D (−λ−2) = 0.

Similarly, other recurrence relations can be obtained using Models IIB(i) and IIB(ii).

4.1.2. Generating functions

The matrix elements Alk(g) of T1(g) f of the Lie group K5 with respect to the basis
functions { fm0+k | m0 ∈ C\{0}, 0 ≤ Rem0 < 1, k = 0,±1, . . .} are defined by:

[T1(g) fm0+k] (u1, . . . ,un, t) =
∞

∑
l=−∞

Alk(g) fm0+l(u1, . . . ,un, t), (4.1)

g = g(q,a,b,c,τ) ∈ K5.

The special case of (4.1) for the particular case q = 0 is obtained by putting an ex-
pression for T1(g) from (3.2) in (4.1) and then computing the matrix elements Alk(g)
by comparing the coefficients of t l on both sides of (4.1). This leads to the following
generating function:

exp

[
µbt(1−

n

∑
i=1

ui xi)

](
1−

n

∑
i=1

ui xi

1+ c
t

)m0+k(
1+

c
t

)m0+k
tk (4.2)

=
∞

∑
l=−∞

ck−lLk−l
m0+l(−µbc)(1−

n

∑
i=1

ui xi)
m0+l t l,

where k = 0,±1, . . . such that k ≥ l, |∑n
i=1 ui xi|< 1,

∣∣∣∑n
i=1

ui xi
1+ c

t

∣∣∣< 1 and Lk−l
m0+l(−µbc)

are Laguerre polynomials defined by [8, 10]:

Lα
ν (z) =

Γ(ν+α+1)
Γ(α+1)Γ(ν+1)1F1(−ν; α+1; z). (4.3)
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Similarly, the following generating function is obtained by putting a = c = τ = 0 in
(4.1):

exp

{
µ

[
qt2(1−

n

∑
i=1

ui xi)
2 +bt(1−

n

∑
i=1

ui xi)

]}
(1−

n

∑
i=1

ui xi)
k tk

=
∞

∑
l=−∞

(−µq)(l−k)/2

(l − k) !
Hl−k

(
µb

2(−µq)1/2

)
(1−

n

∑
i=1

ui xi)
l t l, (4.4)

where k = 0,±1, . . . such that l ≥ k, |∑n
i=1 ui xi|< 1 and Hl−k

(
µb

2(−µq)1/2

)
are Hermite

polynomials defined by [8, 10]:

exp(2xy− y2) =
∞

∑
l=0

yl

l !
Hl(x). (4.5)

Another set of generating function is obtained by putting a = b = τ = 0 in (4.1):

exp

{
µqt2(1−

n

∑
i=1

ui xi)
2

}(
1+

c
t

)m0+k
(

1−
n

∑
i=1

ui xi

1+ c
t

)m0+k

tk

=
∞

∑
l=−∞

ck−l
Γ(m0 + k+1)∑

m

(µqc2)m

m !(2m+ k− l) ! Γ(m0 + l −2m+1)

× (1−
n

∑
i=1

ui xi)
m0+l t l, (4.6)

where m ranges over all integral values so that summand makes sense, k = 0,±1, . . .,
|∑n

i=1 ui xi|< 1 and
∣∣∣∑n

i=1
ui xi
1+ c

t

∣∣∣< 1.
Similarly, the following generating function is obtained by putting q = a = c =

τ = 0 in (4.1):

exp

[
µbt(1−

n

∑
i=1

ui xi)

]
(1−

n

∑
i=1

ui xi)
k tk =

∞

∑
l=−∞

(µb)l−k

(l − k) !
(1−

n

∑
i=1

ui xi)
l t l, (4.7)

where k = 0,±1, . . . such that l ≥ k and |∑n
i=1 ui xi|< 1. We also obtain the following

generating function by putting q = a = b = τ = 0 in (4.1):(
1+

c
t

)m0+k
(

1−
n

∑
i=1

ui xi

1+ c
t

)m0+k

tk

=
∞

∑
l=−∞

ck−l
(

m0 + k
m0 + l

)
(1−

n

∑
i=1

ui xi)
m0+l t l, (4.8)

where k = 0,±1, . . . such that k ≥ l, |∑n
i=1 ui xi|< 1 and

∣∣∣∑n
i=1

ui xi
1+ c

t

∣∣∣< 1.
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Similarly, the following generating function is obtained by putting b = c = τ = 0
in (4.1):

exp

[
µqt2(1−

n

∑
i=1

ui xi)
2

]
(1−

n

∑
i=1

ui xi)
k tk

=
∞

∑
l=−∞

(µq)(l−k)/2

Γ
( l−k

2 +1
)(1− n

∑
i=1

ui xi)
l t l, (4.9)

where k = 0,±1, . . . such that l ≥ k and |∑n
i=1 ui xi|< 1.

Another set of generating function is obtained by putting a = τ = 0 in (4.1):

exp

{
µ

[
qt2(1−

n

∑
i=1

ui xi)
2 +bt(1−

n

∑
i=1

ui xi)

]}(
1+

c
t

)m0+k

×

(
1−

n

∑
i=1

ui xi

1+ c
t

)m0+k

tk

=
∞

∑
l=−∞

ck−l
(

m0 + k
m0 + l

)
∞

∑
m=0

[−(−µq)1/2c]m

m !
(−m0 − l)m

(k− l +1)m
Hm

(
µb

2(−µq)1/2

)
× (1−

n

∑
i=1

ui xi)
m0+l t l, (4.10)

where k = 0,±1, . . . such that k ≥ l , |∑n
i=1 ui xi|<

∣∣1+ c
t

∣∣ , ∣∣ c
t

∣∣< 1 and |∑n
i=1 ui xi|< 1.

The matrix elements Blk(g) of the T2(g) f of the Lie group K5 with respect to the
basis functions

{
fk = tk (1−∑

n
i=1 ui xi)

k | k = 0,1, . . .
}

are defined by:

[T2(g) fk] (u1, . . . ,un, t) =
∞

∑
l=0

Blk(g) fl(u1, . . . ,un, t), g = g(q,a,b,c,τ) ∈ K5.

(4.11)
We obtain the following generating functions under special cases of (4.11), similar to
(4.2)–(4.10). We list a few of them and remaining can be obtained similarly.

exp

[
µbt(1−

n

∑
i=1

ui xi)

](
1−

n

∑
i=1

ui xi

1+ c
t

)k(
1+

c
t

)k
tk

=
∞

∑
l=0

ck−lLk−l
l (−µbc)(1−

n

∑
i=1

ui xi)
l t l,

where k = 0,1, . . . such that k ≥ l ≥ 0, |∑n
i=1 ui xi|<

∣∣1+ c
t

∣∣ , ∣∣ c
t

∣∣< 1;

exp

{
µ

[
qt2(1−

n

∑
i=1

ui xi)
2 +bt(1−

n

∑
i=1

ui xi)

]}
(1−

n

∑
i=1

ui xi)
k tk
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=
∞

∑
l=0

(−µq)(l−k)/2

(l − k) !
Hl−k

(
µb

2(−µq)1/2

)
(1−

n

∑
i=1

ui xi)
l t l,

where k = 0,1, . . . such that l ≥ k ≥ 0, |∑n
i=1 ui xi|< 1.

5. ADDITION THEOREMS

The matrix elements Alk(g) of the multiplier representations T1(g) f of the Lie
group K5 satisfy the addition theorem:

Alk(g1 g2) =
∞

∑
j=−∞

Al j(g1)A jk(g2), l,k = 0,±1,±2, . . . . (5.1)

We now enumerate some special cases of (5.1) when g1 = g1(q,a,b,c,τ) and g2 =
g2(q′,a′,b′,c′,τ′) are chosen suitably. For example, if we assign q = a = b = τ = q′ =
a′ = c′ = τ′ = 0 and b′ = b then (5.1) leads to

eµbcck−lLk−l
m0+l(−µbc) =

∞

∑
j=k

c j−l
(

m0 + j
m0 + l

)
(µb) j−k

( j− k) !
. (5.2)

Similarly, assigning b = c = τ = q′ = a′ = c′ = τ′ = 0 and b′ = b in (2.1) gives the
following addition theorem

(−µq)(l−k)/2

(l − k) !
Hl−k

(
µb

2(−µq)1/2

)
=

∞

∑
j=k

(µq)(l− j)/2

Γ( l− j
2 +1)

(µb) j−k

( j− k) !
. (5.3)

Another addition theorem can be obtained by putting a = τ = q′ = a′ = c′ = τ′ = 0
and b′ = b. This yields

∞

∑
n=0

[−(−µq)1/2c]n

n !
(−m0 − l)n

(k− l +1)n
Hn

(
µb

(−µq)1/2

)
(5.4)

=
∞

∑
j=k

(µbc) j−k
(

m0 + j
m0 + k

)
(k− l) !
( j− l) !

∞

∑
m=0

[−(−µq)1/2c]m

m !
(−m0 − l)m

( j− l +1)m

×Hm

(
µb

2(−µq)1/2

)
.

Finally, we put a = τ = q′ = a′ = c′ = τ′ = 0 and c′ = c resulting in the following
addition theorem

∞

∑
n=0

[−2(−µq)1/2c]n

n !
(−m0 − l)n

(k− l +1)n
2k−lHn

(
µb

2(−µq)1/2

)
(5.5)

=
k

∑
j=l

(
k− l
j− l

)
∞

∑
m=0

[−(−µq)1/2c]m

m !
(−m0 − l)m

( j− l +1)m
Hm

(
µb

2(−µq)1/2

)
.
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Further, the matrix elements Blk(g) of the multiplier representations T2(g) f of the
Lie group K5 satisfy the addition theorem:

Blk(g1 g2) =
∞

∑
j=0

Bl j(g1)B jk(g2), l,k = 0,1,2, . . . . (5.6)

Using the same choices for g1 = g1(q,a,b,c,τ) and g2 = g2(q′,a′,b′,c′,τ′) as in (5.2)–
(5.5), we obtain the following addition theorems from (5.6)

eµbcck−lLk−l
l (−µbc) =

∞

∑
j=k

c j−l
(

j
l

)
(µb) j−k

( j− k) !
, provided j ≥ l ≥ 0;

(−µq)n/2

n !
Hn

(
µb

2(−µq)1/2

)
=

n

∑
m=0

(µq)(n−m)/2

Γ(n−m
2 +1)

(µb)m

m !
,

∞

∑
n=0

[−(−µq)1/2c]n

n !
(−l)n

(k− l +1)n
Hn

(
µb

(−µq)1/2

)
=

∞

∑
j=k

(µbc) j−k
(

j
k

)
(k− l) !
( j− l) !

∞

∑
m=0

[−(−µq)1/2c]m

m !
(−l)m

( j− l +1)m
Hm

(
µb

2(−µq)1/2

)
,

∞

∑
n=0

[−2(−µq)1/2c]n

n !
(−l)n

(k− l +1)n
2k−lHn

(
µb

2(−µq)1/2

)
=

k

∑
j=l

(
k− l
j− l

)
∞

∑
m=0

[−(−µq)1/2c]m

m !
(−l)m

(k− l +1)m
Hm

(
µb

2(−µq)1/2

)
,

respectively.

6. CONCLUSION

We have obtained recurrence relations and generating functions involving basis
functions as Lauricella functions F(n)

A and F(n)
D respectively, for (n+1)-variable mod-

els of K5. Results for n = 1 and n = 2 will lead to the corresponding relations in-
volving basis functions as Gauss hypergeometric function 2F1 and Appell functions
F2, F1 respectively.
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