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Abstract. The purpose of the present paper is to study some properties of generalized M-pro-
jective curvature tensor of a para-Sasakian manifold admitting Zamkovoy connection. The gen-
eralized M-projective is obtained with the help of a new generalized (0,2) symmetric tensor Z
introduced by Mantica and Suh [10]. It is shown that para-Sasakian manifold satisfying the con-
dition R(X ,Y ) ·M̃∗∗ = 0 is an η-Einstein manifold. Also, we found that a para-Sasakian manifold
satisfying M̃∗∗(X ,Y ) ·S = 0 is either an Einstein manifold or ψ = 1 on it.
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1. INTRODUCTION

The notion of the almost para-contact structure on a differentiable manifold is de-
fined by I. Sato [14, 15]. The para-contact metric manifolds have been studied by
many authors in recent years. The structure is an analogue of the almost contact
structure [5, 13] and is closely related to almost product structure (in contrast to al-
most contact structure, which is related to almost complex structure). Every differen-
tiable manifold with almost para-contact structure defined by I. Sato has a compatible
Riemannian metric.

An almost para-contact structure on a pseudo-Riemannian manifold M of dimen-
sion (2n+ 1) defined is by S. Kaneyuki and M. Konzai [18] and they constructed
the almost paracomplex structure on M ×R. Recently, S. Zamkovoy [22] has asso-
ciated the almost para-contact structure given in [18] to a pseudo-Riemannian metric
of signature (n+1,n) and showed that any almost para-contact structure admits such
a pseudo-Riemannian metric.

The study of M-projective curvature tensor has been a very attractive field for in-
vestigations in the past many decades. M-projective curvature tensor was introduced
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by G. P. Pokhariyal and R. S. Mishra [12] in 1971. Also, in 1986, R. H. Ojha [11] ex-
tended some properties of the M-projective curvature tensor in Sasakian and Kähler
manifolds. In 2010, the study of M-projective curvature tensor in Riemannian mani-
folds and also in Kenmotsu manifolds was resumed by S. K. Chaubey and R. H. Ojha
[6]. Further, R. N. Singh and S. K. Pandey [19] have studied various geometric prop-
erties of M-projective curvature tensor on N(k)-contact metric manifolds. In 2020, A.
Mandal and A. Das [8] studied some properties of the M-projective curvature tensor
in Sasakian manifolds. Afterwards, several researchers have carried out the study of
M-projective curvature tensor in a variety of directions such as [9, 16–18]. The M-
projective curvature tensor defined by G. P. Pokhariyal and R. S. Mishra [12] is given
as below;

M∗(X ,Y,U) = R(X ,Y,U)− 1
2(n−1)

[S(Y,U)X −S(X ,U)Y

+g(Y,U)QX −g(X ,U)QY ],

for all X ,Y,U ∈ χ(M), where χ(M) is the set of all vector field of manifold M,
R(X ,Y )U is the Riemannian curvature tensor of type (0,3) and S is the Ricci tensor,
i.e,

S(X ,Y ) = g(QX ,Y ),

where Q is a Ricci operator of type (1,1).
Also, the type (0,4) M-projective curvature tensor field ′M∗ is given by

′M∗(X ,Y,U,V ) = ′R(X ,Y,U,V )

− 1
2(n−1)

[S(Y,U)g(X ,V )−S(X ,U)g(Y,V )

+g(Y,U)S(X ,V )−g(X ,U)S(Y,V )],

(1.1)

where
′M∗(X ,Y,U,V ) = g(M∗(X ,Y,U),V )

and
′R(X ,Y,U,V ) = g(R(X ,Y,U),V )

for the arbitrary vector fields X ,Y,U,V∈ χ(M).
A new generalized (0,2) symmetric tensor Z, defined by Mantica and Suh [10], is

given by the following relation

Z(X ,Y ) = S(X ,Y )+ψg(X ,Y ), (1.2)

where ψ is an arbitrary scalar function.
From equation (1.2), we have

Z(φX ,φY ) = S(φX ,φY )+ψg(φX ,φY ),
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By using equation (1.2) in equation (1.1), we get
′M∗(X ,Y,U,V ) = ′R(X ,Y,U,V )

− 1
2(n−1)

[Z(Y,U)g(X ,V )−Z(X ,U)g(Y,V )

+g(Y,U)Z(X ,V )−g(X ,U)Z(Y,V )]

− ψ

(n−1)
[g(Y,V )g(X ,U)−g(Y,U)g(X ,V )].

(1.3)

If we denote the first five terms of above equation by
′M∗∗(X ,Y,U,V ) = ′R(X ,Y,U,V )

− 1
2(n−1)

[Z(Y,U)g(X ,V )−Z(X ,U)g(Y,V )

+g(Y,U)Z(X ,V )−g(X ,U)Z(Y,V )],

(1.4)

then the equation (1.3) reduces to

′M∗∗(X ,Y,U,V ) = (′M∗)(X ,Y,U,V )+
ψ

(n−1)
[g(Y,V )g(X ,U)

−g(X ,V )g(Y,U)].

We call this new tensor field ′M∗∗ defined by equation (1.4), generalized M-projective
curvature tensor of para-Sasakian manifold.

In 2008, The notion of Zamkovoy connection was introduced by S. Zamkovoy
[22] for a para-contact manifold. And this connection is defined as a canonical para-
contact connection whose torsion is the obstruction of para-contact manifold to be
a para-Sasakian manifold [1]. For an n-dimensional almost contact metric manifold
M equipped with an almost contact metric structure (φ,ξ,η,g) consisting of a (1,1)
tensor field φ, a vector field ξ, a 1-form η and a Riemannian metric g, the Zamkovoy
connection is defined by [22]

∇̃XY = ∇XY +(∇X η)(Y )ξ−η(Y )∇X ξ+η(X)φY (1.5)

for all X ,Y,U ∈ χ(M).
This connection was further studied by A. M. Blaga in para Kenmotsu manifolds

[4] and A. Biswas, K. K. Baishya in Sasakian manifolds [2, 3].
In this paper, we study some properties of the generalized M-projective curvature

tensor of para-Sasakian manifold with respect to the Zamkovoy connection. The
present paper is organized as follows: Section 2 is devoted to preliminaries and we
give some relations between curvature tensor (resp. Ricci tensor) with respect to
Zamkovoy connection and curvature tensor (resp. Ricci tensor) with respect to Levi-
Civita connection. In Section 3, we describe briefly the generalized M-projective
curvature tensor on para-Sasakian manifold with respect to the connection. In Sec-
tion 4, we show that a generalized M-projectively semi-symmetric para-Sasakian
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manifold is an η-Einstein manifold. Further in Section 5, the goal is to examine
implication of the condition M̃∗∗(X ,Y ) · S = 0 and we show that the para-Sasakian
manifold is either an Einstein manifold or ψ = 1 on it. In the last section, we show
that φ2((∇V M̃∗∗)(X ,Y,U)) = 0 is an η-Einstein manifold.

2. PRELIMINARIES

An (2n+ 1)-dimensional differentiable manifold M is said to have almost para-
contact structure (φ,ξ,η), where φ is a tensor field of type (1,1), ξ is a vector field
known as characteristic vector field and η is a 1-form on M satisfying the following
relations [18]

φ
2 = I −η⊗ξ, (2.1)

η(ξ) = 1, (2.2)

φ(ξ) = 0, η(φX) = 0,

and

rank(φ) = 2n,

where I denotes the identity transformation, a differentiable manifold with almost
para-contact structure (φ,ξ,η) is called an almost para-contact manifold [1].

Moreover, the tensor field φ induces an almost paracomplex structure on the para-
contact distribution D = ker (η), i.e, the eigendistributions D± corresponding to the
eigenvalues ±1 of φ are both n-dimensional.

If an almost para-contact manifold M with an almost para-contact structure (φ,ξ,η)
admits a pseudo-Riemannian metric g such that [22]

g(φX ,φY ) =−g(X ,Y )+η(X)η(Y ), (2.3)

for all X ,Y ∈ χ(M), then we say that M is an almost para-contact metric manifold
with an almost para-contact metric structure (φ,ξ,η,g) and such metric g is called
compatible metric. Any compatible metric g is necessarily of signature (n+1,n).

From (2.3) one can see that [22]

g(X ,φY ) =−g(φX ,Y ),

and also we take
η(X) = g(X ,ξ) (2.4)

for any X ,Y ∈ χ(M). The fundamental 2-form of M is defined by

α(X ,Y ) = g(X ,φY ).

The structure (φ,ξ,η,g) satisfying conditions (2.1) to (2.4) is called an almost
para-contact metric structure and the manifold M with such a structure is called an
almost para-contact Riemannian manifold [14].
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An almost para-contact metric structure becomes a para-contact metric structure
[22] if

g(X ,φY ) = dη(X ,Y ),
for all vector field X ,Y ∈ χ(M), where

dη(X ,Y ) =
1
2
[Xη(Y )−Y η(X)−η([X ,Y ])].

For a (2n + 1) dimensional manifold M with the structure (φ,ξ,η,g), one can
also construct a local orthonormal basis which is called a φ-basis (Xi,φXi,ξ), (i =
1,2, . . . ,n) [22]

An almost para-contact metric manifold structure (φ,ξ,η,g) is para-Sasakian man-
ifold if and only if the Levi-Civita connection ∇ of g satisfies [22]

(∇X φ)Y =−g(X ,Y )ξ+η(Y )X , (2.5)

for any X ,Y ∈ χ(M).
From (2.5), it can be seen that

(∇X ξ) =−φX . (2.6)

Example 1. [1]. Let M = R2n+1 be the (2n+ 1)- dimensional real number space
with (x1,y1,x2,y2, . . . ,xn,yn,z) standard coordinate system. Defining

φ
∂

∂xα

=
∂

∂yα

, φ
∂

∂yα

=
∂

∂xα

, φ
∂

∂z
= 0,

ξ =
∂

∂z
, η = dz,

g = η⊗η+
n

∑
α=1

dxα ⊗dxα −
n

∑
α=1

dyα ⊗dyα,

where α= 1,2, . . . ,n, then the set (M,φ,ξ,η,g) is an almost para-contact metric man-
ifold.

In a para-Sasakian manifold, the following relations also hold [22]:

η(R(X ,Y )Z) = g(X ,Z)η(Y )−g(Y,Z)η(X), (2.7)

R(X ,Y,ξ) = η(X)Y −η(Y )X ,

R(X ,ξ,Y ) =−R(ξ,X ,Y ) =−g(X ,Y )ξ+η(Y )X , (2.8)

R(ξ,X ,ξ) = X −η(X)ξ,

S(φX ,φY ) = S(X ,Y )+(n−1)η(X)η(Y ),

and

S(X ,ξ) =−2nη(X), (2.9)
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for any vector fields X ,Y,Z ∈ χ(M). Here, R is Riemannian curvature tensor and S is
the Ricci tensor defined by g(QX ,Y ) = S(X ,Y ), where Q is the Ricci operator.

In view of (2.6), the equation (1.5) becomes

∇̃XY = ∇XY +η(X)φY +η(Y )φX +g(X ,φY )ξ. (2.10)

On a para-Sasakian manifold, the connection ∇̃ has the following properties [1]:

∇̃η = 0, ∇̃g = 0, ∇̃ξ = 0,

and
(∇̃X φ)Y = (∇X φ)Y +g(X ,Y )ξ−η(Y )X .

for any vector fields X ,Y, ∈ χ(M).
It is known that the curvature tensor R̃ of a para-Sasakian manifold M with respect

to the Zamkovoy connection ∇̃ defined by

R̃(X ,Y )Z = ∇̃X ∇̃Y Z − ∇̃Y ∇̃X Z − ∇̃[X ,Y ]Z

satisfies the following [1]

R̃(X ,Y )Z = R(X ,Y )Z +g(Y,Z)η(X)ξ−g(X ,Z)η(Y )ξ+η(Y )η(Z)X

−η(X)η(Z)Y +2g(X ,φY )φZ +g(X ,φZ)φY −g(Y,φZ)φX ,

S̃(X ,Y ) = S(X ,Y )−2g(X ,Y )+(2n+2)η(X)η(Y ), (2.11)

and
r̃ = r−2n

for any X ,Y,Z ∈ χ(M), where R, S and r are curvature tensor, Ricci tensor and scalar
curvature relative to ∇ respectively and R̃, S̃ and r̃ are curvature tensor, Ricci tensor
and scalar curvature relative to ∇̃. From (2.11), it is easy to note that S̃ is symmetric.

Further, it is known that [1] on a para-Sasakian manifold, the following relations
hold

g(R̃(X ,Y )Z,ξ) = η(R̃(X ,Y )Z) = 0, (2.12)

R̃(X ,Y )ξ = R̃(ξ,X)Y = R̃(ξ,X)ξ = 0, (2.13)

and

S̃(X ,ξ) = 0

for any X ,Y,U ∈ χ(M).

Definition 1. An (2n+ 1)-dimensional para-Sasakian manifold M is said to be
η-Einstein manifold if the Ricci tensor of type (0,2) is of the form

S(X ,Y ) = ag(X ,Y )+bη(X)η(Y )

for any X ,Y ∈ χ(M) where a and b are scalars.



ON GENERALIZED M-PROJECTIVE CURVATURE TENSOR OF PARA-SASAKIAN MANIFOLD 1015

From (2.11), it can also be noted that if S̃(X ,Y ) = 0. then

S(X ,Y ) = 2g(X ,Y )+(−2n−2)η(X)η(Y ).

which proves that if a para- Sasakian manifold M is Ricci-flat with respect to the
Zamkovoy connection, then it is an η-Einstein manifold.

3. GENERALIZED M-PROJECTIVE CURVATURE TENSOR OF PARA-SASAKIAN
MANIFOLD

In this section, we study generalized M-projective curvature tensor of the para-
Sasakian manifold with respect to the Zamkovoy connection and state some of its
properties. The M-projective curvature tensor M̃ with respect to the Zamkovoy con-
nection ∇̃ is given by

M̃∗(X ,Y,U) = R̃(X ,Y,U)

− 1
2(n−1)

[S̃(Y,U)X − S̃(X ,U)Y

+g(Y,U)Q̃X −g(X ,U)Q̃Y ],

(3.1)

Also, the type (0,4) M-projective curvature tensor field ′M̃∗ is given by

′M̃∗(X ,Y,U,V ) = ′R̃(X ,Y,U,V )

− 1
2(n−1)

[S̃(Y,U)g(X ,V )− S̃(X ,U)g(Y,V )

+g(Y,U)S̃(X ,V )−g(X ,U)S̃(Y,V )],

(3.2)

where
′M̃∗(X ,Y,U,V ) = g(M̃∗(X ,Y,U),V )

and
′R̃(X ,Y,U,V ) = g(R̃(X ,Y,U),V )

for the arbitrary vector fields X ,Y,U,V∈ χ(M).
Now, differentiating covariantly equation (3.1) with respect to V , we get

(∇V M̃∗)(X ,Y )U = (∇V R̃)(X ,Y )U

− 1
2(n−1)

[(∇V S̃)(Y,U)X − (∇V S̃)(X ,U)Y

+g(Y,U)(∇V Q̃)X −g(X ,U)(∇V Q̃)Y ].

(3.3)
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The generalized M-projective curvature tensor of para-Sasakian manifold with re-
spect to the Zamkovoy connection is defined by,

′M̃∗(X ,Y,U,V ) = ′R̃(X ,Y,U,V )

− 1
2(n−1)

[Z(Y,U)g(X ,V )−Z(X ,U)g(Y,V )

+g(Y,U)Z(X ,V )−g(X ,U)Z(Y,V )]

− ψ

(n−1)
[g(Y,V )g(X ,U)−g(Y,U)g(X ,V )].

If we denote the first five terms of above equation by

′M̃∗∗(X ,Y,U,V ) = ′R̃(X ,Y,U,V )

− 1
2(n−1)

[Z(Y,U)g(X ,V )−Z(X ,U)g(Y,V )

+g(Y,U)Z(X ,V )−g(X ,U)Z(Y,V )],

(3.4)

then the equation (3.4) reduces to

′M̃∗∗(X ,Y,U,V ) = ′M̃∗(X ,Y,U,V )+
ψ

(n−1)
[g(Y,V )g(X ,U)

−g(X ,V )g(Y,U)].
(3.5)

We call this new tensor field ′M̃∗∗ defined by equation (3.4), generalized M-projective
curvature tensor of para-Sasakian manifold with respect to the Zamkovoy connection.

If ψ=0, then from equation (3.5), we have

′M̃∗∗(X ,Y,U,V ) = ′M̃∗(X ,Y,U,V ).

Lemma 1. If the scalar function ψ vanishes on para-Sasakian manifold, then
the M-projective curvature tensor and generalized M-projective curvature tensor are
identical.

Lemma 2. Generalized M-projective curvature tensor of para-Sasakian manifold
with respect to the Zamkovoy connection satisfies Bianchi’s first identity.

Remark 1. Generalized M-projective curvature tensor ′M̃∗∗ of para-Sasakian man-
ifold with respect to the Zamkovoy connection is:

(a) skew-symmetric in the first two slots,
(b) skew-symmetric in the last two slots

and

(c) symmetric in pair of slots.
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Proposition 1. Generalized M-projective curvature tensor of para-Sasakian man-
ifold satisfies the following identities:

(a) M̃∗∗(ξ,Y,U) = −M̃∗∗(Y,ξ,U) =

[
(1−ψ)

(n−1)

]
[g(Y,U)ξ−η(U)Y ]

−
[

1
2(n−1)

]
[S(Y,U)ξ−η(U)QY ],

(3.6)

(b) M̃∗∗(X ,Y,ξ) = −
[
(1−ψ)

(n−1)

]
[η(X)Y −η(Y )X ]

+

[
1

2(n−1)

]
[η(Y )QX −η(X)QY ],

(3.7)

(c) η(M̃∗∗(U,V,Y )) =
[
(1−ψ)

(n−1)

]
[g(V,Y )η(U)−g(U,Y )η(V )]

+

[
1

2(n−1)

]
[S(U,Y )η(V )−S(V,Y )η(U)].

(3.8)

4. GENERALIZED M-PROJECTIVELY SEMI-SYMMETRIC PARA-SASAKIAN
MANIFOLD WITH RESPECT TO THE ZAMKOVOY CONNECTION

Definition 2. A para-Sasakian manifold is said to be semi-symmetric [20] if it
satisfies the condition

R(X ,Y ) ·R = 0,

where R(X ,Y ) is considered as the derivation of the tensor algebra at each point of
the manifold.

Definition 3. A para-Sasakian manifold is said to be generalized M-projectively
semi-symmetric if it satisfies the condition

R(X ,Y ) · M̃∗∗ = 0,

where M̃∗∗ is generalized M-projective curvature tensor relative to ∇̃ and R(X ,Y ) is
considered as the derivation of the tensor algebra at each point of the manifold.

Theorem 1. A generalized M-projectively semi-symmetric para-Sasakian mani-
fold with respect to the Zamkovoy connection is an η-Einstein manifold.

Proof. Consider
R(X ,Y ) · M̃∗∗ = 0,

Now, we put X = ξ in above equation, we get

(R(ξ,X) · M̃∗∗)(U,V,Y ) = 0,
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for any X ,Y,U,V ∈ χ(M), where M̃∗∗ is generalized M-projective curvature tensor,
which gives

0 = R(ξ,X ,M̃∗∗(U,V,Y ))− M̃∗∗(R(ξ,X ,U),V,Y )

− M̃∗∗(U,R(ξ,X ,V ),Y )− M̃∗∗(U,V,R(ξ,X ,Y ).

In view of the equation (2.8), the above equation takes the form

0 = η(M̃∗∗(U,V,Y ))X −′ M̃∗∗(U,V,Y,X)ξ

+g(X ,U)η(M̃∗∗(ξ,V,Y )−η(V )η(M̃∗∗(U,X ,Y )

+g(X ,V )η(M̃∗∗(U,ξ,Y )−η(Y )η(M̃∗∗(U,V,X)

+g(X ,Y )η(M̃∗∗(U,V,ξ)−η(U)η(M̃∗∗(X ,V,Y ).

Taking inner product of above equation with ξ and using equations (2.2), (2.3), (2.12),
(2.13), (3.5), (3.6), (3.7) and (3.8), we get

0 =− ′M̃∗∗(U,V,Y,X)

− 1
2(n−1)

[S(U,X)η(Y )η(V )−S(V,X)η(U)η(Y )]

+
(1−ψ)

(n−1)
[g(X ,U)g(Y,V )−g(X ,V )g(Y,U)]

− 1
2(n−1)

[S(V,Y )g(X ,U)−S(Y,U)g(X ,V )]

− n
(n−1)

[g(X ,U)η(Y )η(V )−g(X ,V )η(U)η(Y )] .

By virtue of the equations (2.11) and (3.2), the above equation reduces to

′R̃(U,V,Y,X) =
1

2(n−1)
[S̃(V,Y )g(U,X)− S̃(U,Y )g(V,X)

+ S̃(U,X)g(V,Y )− S̃(V,X)g(U,Y )]

− 1
2(n−1)

[S(U,X)η(Y )η(V )−S(V,X)η(U)η(Y )]

+
(1−ψ)

(n−1)
[g(X ,U)g(Y,V )−g(X ,V )g(Y,U)]

− 1
2(n−1)

[S(V,Y )g(X ,U)−S(Y,U)g(X ,V )]

− n
(n−1)

[g(X ,U)η(Y )η(V )−g(X ,V )η(U)η(Y )] .
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Let {ei : i= 1,2 . . . ,n} be an orthonormal basis. Putting X =U = ei in above equation
and taking summation over i, we get

S(Y,V ) =

[
r+2n−4nψ−2

(2n−1)

]
g(Y,V )+

[
r+4n2 −2
(2n−1)

]
η(Y )η(V ).

This shows that generalized M-projectively semi-symmetric para-Sasakian manifold
is an η-Einstein manifold. □

5. PARA-SASAKIAN MANIFOLD SATISFYING M̃∗∗(X ,Y ) ·S = 0

In this section, we consider para-Sasakian manifold with Zamkovoy connection
[7] satisfying the condition

M̃∗∗(X ,Y ) ·S = 0,

for all X ,Y∈ χ(M), where M̃∗∗ is generalized M-projective curvature tensor of para-
Sasakian manifold.

Theorem 2. A para-Sasakian manifold admitting Zamkovoy connection satisfying
M̃∗∗(X ,Y ) ·S = 0 is either an Einstein manifold or ψ = 1.

Proof. Consider
(M̃∗∗(ξ,X) ·S)(U,V ) = 0,

which gives
S(M̃∗∗(ξ,X ,U),V )+S(U,M̃∗∗(ξ,X ,V )) = 0.

Using equations (2.9), (2.10) and (3.6) in above equation, we get

0 =

[
−2n(ψ−1)
(n−1)

]
[g(X ,U)η(V )+g(X ,V )η(U)]

−
[

1
(n−1)

]
[S(X ,V )η(U)+S(X ,U)η(V )]

+

[
ψ

(n−1)

]
[S(X ,V )η(U)+S(X ,U)η(V )].

Putting U = ξ in the above equation and using the equations (2.3), (2.4) and (2.9), we
get [

(ψ−1)
(n−1)

]
[S(X ,V )−2ng(X ,V )] = 0,

which gives either ψ = 1 or

S(X ,V ) = 2ng(X ,V ).

This shows that generalized M-projectively Ricci semi-symmetric para-Sasakian man-
ifold with respect to the Zamkovoy connection is either an Einstein manifold or ψ= 1
on it. □
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6. A PARA-SASAKIAN MANIFOLD SATISFYING φ2((∇V R)(X ,Y,U)) = 0

Below we present the definition given by Takahashi [21]

Definition 4. A para-Sasakian manifold is said to be locally φ-symmetric if

φ
2((∇V R)(X ,Y,U)) = 0, (6.1)

for all vector fields X ,Y,U,V orthogonal to ξ.

Definition 5. A para-Sasakian manifold is said to be φ-symmetric if

φ
2((∇V R)(X ,Y,U)) = 0, (6.2)

for arbitrary vector fields X ,Y,U,V .

Analogous to the conditions (6.1) and (6.2), we consider a para-Sasakian manifold
satisfying

φ
2((∇V M̃∗∗)(X ,Y,U)) = 0, (6.3)

for arbitary vector fields X ,Y,U,V .

Theorem 3. A para-Sasakian manifold admitting Zamkovoy connection satisfying
φ2((∇V M̃∗∗)(X ,Y,U)) = 0 is an Einstein manifold.

Proof. Taking covariant derivative of equation (3.5) with respect to vector field V ,
we obtain

(∇V M̃∗∗)(X ,Y,U) = (∇V M̃∗)(X ,Y,U)+
dr(ψ)
(n−1)

[g(X ,U)Y −g(Y,U)X)].

Using equation (3.3) in the above equation, we get

(∇V M̃∗∗)(X ,Y,U) = (∇V R̃)(X ,Y,U)+
dr(ψ)
(n−1)

[g(X ,U)Y −g(Y,U)X)]

− 1
2(n−1)

[(∇V S̃)(Y,U)X − (∇V S̃)(X ,U)Y

+g(Y,U)(∇V Q̃)X −g(X ,U)(∇V Q̃)Y ].

(6.4)

Assume that the manifold is generalized M-projectively φ-symmetric, then from equa-
tion (6.3), we have

φ
2((∇V M̃∗∗)(X ,Y,U)) = 0,

which on using equation (2.1), gives

(∇V M̃∗∗)(X ,Y,U) = η((∇V M̃∗∗)(X ,Y,U))ξ.
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Using equation (6.4) in above equation, we get

(∇V R̃)(X ,Y,U)+
dr(ψ)
(n−1)

[g(X ,U)Y −g(Y,U)X)]

− 1
2(n−1)

[(∇V S̃)(Y,U)X − (∇V S̃)(X ,U)Y

+g(Y,U)(∇V Q̃)X −g(X ,U)(∇V Q̃)Y ]

= η((∇V R̃)(X ,Y,U))ξ+
dr(ψ)
(n−1)

[g(X ,U)η(Y )−g(Y,U)η(X))]ξ

− 1
2(n−1)

[(∇V S̃)(Y,U)η(X)− (∇V S̃)(X ,U)η(Y )

+g(Y,U)η((∇V Q̃)X)−g(X ,U)η((∇V Q̃)Y )]ξ.

Taking inner product of the above equation with W , we get

g((∇V R̃)(X ,Y,U),W )+
dr(ψ)
(n−1)

[g(X ,U)g(Y,W )−g(Y,U)g(X ,W )]

− 1
2(n−1)

[(∇V S̃)(Y,U)g(X ,W )− (∇V S̃)(X ,U)g(Y,W )

+g(Y,U)g((∇V Q̃)X ,W )−g(X ,U)g((∇V Q̃)Y,W )]

= η((∇V R̃)(X ,Y,U))η(W )+
dr(ψ)
(n−1)

[g(X ,U)η(Y )η(W )

−g(Y,U)η(X)η(W )]

− 1
2(n−1)

[(∇V S̃)(Y,U)η(X)η(W )− (∇V S̃)(X ,U)η(Y )η(W )

+g(Y,U)η((∇V Q̃)X)η(W )−g(X ,U)η((∇V Q̃)Y )η(W )].

Putting X =W = ei and taking summation over i, we obtain

0 =− 1
(n−1)

(∇V S̃)(Y,U)− dr(ψ)
(n−1)

[η(Y )η(U)−g(Y,U)]

− 1
2(n−1)

[g(Y,U)g((∇V Q̃)ei,ei)−g((∇V Q̃)Y,U)]

− 2n
(n−1)

dr(ψ)g(Y,U)−η((∇V R̃)(ei,Y,U))η(ei)

+
1

2(n−1)
[(∇V S̃)(Y,U)− (∇V S̃)(ei,U)η(Y )η(ei)

+g(Y,U)η((∇V Q̃)ei)η(ei)−η((∇V Q̃)Y )η(U)].
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Taking U = ξ in the above equation, we have

0 =− 1
2(n−1)

(∇V S̃)(Y,ξ)−η((∇V R̃)(ei,Y,ξ))η(ei)

− 1
2(n−1)

[dr(Ṽ )η(Y )− (∇V S̃)(ei,ξ)η(ei)η(Y )

+η((∇V Q̃)ei)η(ei)η(Y )]

− 2n
(n−1)

dr(ψ)η(Y ).

(6.5)

Now

η((∇V R̃)(ei,Y,ξ)η(ei) = g((∇V R̃)(ei,Y,ξ),ξ)g(ei,ξ).

Also
g((∇V R̃)(ei,Y,ξ),ξ) = g(∇V R̃(ei,Y,ξ),ξ)−g(R̃(∇V ei,Y,ξ),ξ)

−g(R̃(ei,∇VY,ξ),ξ)−g(R̃(ei,Y,∇V ξ),ξ).
(6.6)

Since {ei} is an orthonormal basis, so ∇X ei = 0 and using equation (2.8), we get

g(R̃(ei,∇VY,ξ),ξ) = 0,

Since
g(R̃(ei,Y,ξ),ξ)+g(R̃(ξ,ξ,Y ),ei) = 0.

Therefore, we have

g(∇V R̃(ei,Y,ξ),ξ)+g(R̃ei,Y,ξ),∇V ξ) = 0.

Using this fact in equation (6.6), we get

g((∇V R̃)(ei,Y,ξ),ξ) = 0. (6.7)

Also
η((∇V Q̃)ei)η(ei) = g((∇V Q̃)ei,ξ)g(ei,ξ) = g((∇V Q̃)ξ,ξ).

Using equations (2.6) and (2.9), we get

η((∇V Q̃)ei)η(ei) = 0. (6.8)

Using equations (6.7) and (6.8) in (6.5), we have

(∇V S̃)(Y,ξ) =−4ndr(ψ)η(Y )+dr(Ṽ )η(Y ). (6.9)

Taking Y = ξ in above equation and using equations (2.7) and (2.10), we get

dr(ψ) =−dr(Ṽ )

4n
, (6.10)

which shows that r is constant.
Now, we have

(∇V S̃)(Y,ξ) = ∇V S̃(Y,ξ)− S̃(∇VY,ξ)− S̃(Y,∇V ξ),
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then by using (2.5), (2.6), (2.10) in the above equation, it follows that

S̃(Y,φV ) = 0. (6.11)

Putting Y = φY in above equation and using (2.11), (6.9), (6.10) and (6.11), we obtain

S(Y,V ) =−2g(Y,V )−2nη(V )η(Y ).

which shows that M2n+1 is an η-Einstein manifold. □
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[20] Z. I. Szabó, “Structure theorems on Riemannian spaces satisfying R(X ,Y ) ·R = 0. I: The local
version.” J. Differ. Geom., vol. 17, pp. 531–582, 1982, doi: 10.4310/jdg/1214437486.

[21] T. Takahashi, “Sasakian manifold with pseudo-Riemannian metric.” Tôhoku Math. J. (2), vol. 21,
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