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Abstract. In order to consider j-wise relative r-primality conditions that do not necessarily re-
quire all j-tuples of elements in a Dedekind domain to be relatively r-prime, we define the notion
of j-wise relative r-primality with respect to a fixed j-uniform hypergraph H. This allows us
to provide further generalisations to several results on natural densities not only for a ring of
algebraic integers O, but also for the ring F[x].
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1. INTRODUCTION

In 1976, Benkoski proved that the natural density of the set of relatively r-prime
m-tuples of positive integers (with rm > 1) equals 1/(rm), where { is the Riemann
zeta function [1]. We note that an m-tuple of positive integers is relatively r-prime if
their greatest common rth power divisor is equal to 1.

This acted as a culmination of the work of Mertens [8], Lehmer [7], and Gegen-
bauer [3]. Thereafter, T6th [14, 15] and Hu [5] found the natural density of the set
of j-wise relatively prime m-tuples of positive integers (where j < m). Extensions
of these results have been made to ideals in a ring of algebraic integers O by Sit-
tinger [11, 13] and subsequently to elements in a ring of algebraic integers as well
by Micheli [2] and Sittinger [12]. Moreover, Morrison and Dong [9] as well as Guo,
Hou, and Liu [4] gave analogous results for elements in [, [x].

We can further generalise the notion of j-wise relatively primality by considering
relative primality conditions that require some but not all j-tuples to be relatively
prime. A first step in this direction was investigated by Hu [6], who used graphs to
notate which pairs of integers are to be relatively prime.

Definition 1. Let D be a Dedekind domain. Fix r,m € N. We say that By, ..., 3, € D
are relatively r-prime if p”{ (B1, ..., B) for any prime ideal p C D.
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In order to properly generalise the notion of G-wise relative primality, we use the
concept of a j-uniform hypergraph H, in which any edge connects exactly j vertices.

Definition 2. Let D be a Dedekind domain. Fix r, j,m € N where j < m, and let
H be a simple undirected j-uniform hypergraph whose m vertices are By,...,B,, € D.
We say that By,...,B, € D are H-wise relatively r-prime if any j adjacent vertices
of H are relatively r-prime.

A few remarks are now in order. First, although we state the definitions in this
generality, we are in particular interested in the cases of a ring of algebraic integers
as well the polynomial rings [F,[x]. Next, suppose we take D =7, j =2, and r = 1.
Then our hypergraph is a graph G, and Definition 2 reduces to m integers are G-
wise relatively prime as defined in [6]. Moreover when D = O and H = K,(n] ), the
complete j-uniform hypergraph on m vertices, this definition reduces to m elements
being j-wise relatively r-prime as defined in [12].

Definition 3. Given a j-uniform hypergraph H, we say that a subset S of vertices
from H is an independent vertex set if S does not contain any hyperedge of H.
Moreover for any non-negative integer k, we let ix(H) denote the number of inde-
pendent sets of k vertices in H.

We now state the main results of this article, starting with the algebraic integer
case.

Theorem 1. Fixr, j,m € N such that j < m and rm > 2, and let K be an algebraic
number field over Q with ring of integers O. Then, the density of the set of H-wise
relatively r-prime ordered m-tuples of elements in O equals

I1 [Z i) (1 - m(lpr) )m_k<fn(lpr) )]

p k=0

where the product is over all nonzero prime ideals in O.

After setting up the pertinent notation in Section 2, we prove Theorem 1.

Since the arithmetic in the rings Z and [, x| have striking similarities (for further
details, see [10]), we would expect that we can derive a H-wise relatively r-prime
density statement for I, [x]. In Section 3, we state and prove an analogue of Theorem
1 for the function field case [F, x].

Theorem 2. Fix r,j,m € N such that j < m and rm > 2. Then the density of the
set of H-wise relatively r-prime ordered m-tuples of polynomials in IF4[x| equals

H mn ()1 1 m—k 1 k
wH) (1~ ar) (s |
firred. | k=0 4q dee/ q dee/

where it is understood that the product is over all monic irreducible polynomials in
F,[x].
q
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Remark 1. By noting that N(f) = |F,[x]/(f)| = ¢!/, the analogy between this
latter density statement and the one given in the algebraic number ring case is made
clear.

2. DENSITY OF H-WISE RELATIVELY r-PRIME ELEMENTS IN O

Let K be an algebraic number field of degree n over Q with O as its ring of in-
tegers having integral basis B = {a, ..., &, }. As a way to generalise the notion of all
positive integers less than or equal to some positive constant M, we define

O3[M] = {Zn:ci(xl- fG € [—M,M)HZ}.

The goal of this section is to derive a H-wise relatively prime density statement in O
by using the methods developed by [2] and [12]. First, we define a notion of density
for a subset 7" of O™ that reduces to the classic notion of density over Z as follows.

Definition 4. Let 7 C O™ and fix an integral basis B of O. The upper and lower
densities of 7 with respect to B are respectively defined as

— TNOgM|™ TNOgM|™
Dg(T) = limsup w and Dg(T) = liminfw
Mo |Op[M]"] M= |Og[M]"|
If Dg(T) = Dg(T), we say that its common value is called the density of 7 with
respect to B and denote this as Dz (7). Whenever this density is independent of the
chosen integral basis B, we denote this density as D(7).

Although the manner in which we cover O could potentially depend on the choice
of the given integral basis ‘B, it is a direct corollary to Theorem 1 that the density
of the set of H-wise relatively r-prime elements in O is actually independent of the
integral basis used.

For the remainder of this section, let S be a finite set of rational primes, and fix
positive integers r, j,m such that j < m. Fix a j-uniform hypergraph H, and define
Ejs to be the set of m-tuples z = (zj,...,z,) in O™ such that any ideal generated by
Jj entries of z is H-wise relatively r-prime with respect to all p | (p) for each p € S.
That is, Eg consists of the H-wise relatively r-prime m-tuples of algebraic integers
from O with respect to S.

In order to aid us in analysing Eg, let

m: 0" ([Tow)"
2

be the surjective homomorphism induced by the family of natural projections
Ty : O— O/p" forallp | (p) where p € S.

From the definition of H-wise relative r-primality of algebraic integers, we immedi-
ately deduce the following lemma.
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Lemma 1. For a given prime ideal p | (p) where p € S and k € {1,2,...,m}, let

A,(Cp) denote the set of elements in (O/p")" where exactly k of their m components are
0, and these k components form an independent vertex set in H. Then,

Es==' ([T UAY):
bl{p) k=0
pES

Proposition 1. Suppose that p is a prime ideal in O that lies above a fixed rational
prime p, and let D), =Y., fp where f), denotes the inertial degree of p. If we fix
q € Nand set N =[],csp’, then

m
[Es N1 0algN)"| = ()™ TT ™) | Y ig(H)(M(p") — 1) “(p')*].
pl(p) k=0
pES
Proof. We first examine the map 7. For brevity, we set R, = [,y O/p". Then
we let Ty denote the reduction modulo N homomorphism, and y = (y,),es Where
W, : (O/{p)")" — R} is the homomorphism induced by the projection maps
O/(p)" — R,. Finally, let ¥ be its extension to (O/(N))™ (by applying the Chinese
Remainder Theorem to the primes in S). These maps are related to each other through
the following diagram

0" — s (O/(N))" —Y— (MMpesRy)"

% l:

(Tpes O/ (P )™ —— (TTpesRp)™

and it follows that T = Yo m,.

To prove this proposition, we start by examining y~!. Since for each rational
prime p the mapping v, : (O/(p"))" — R} is a surjective free Z,-module homo-
morphism, we have for all y € ([1,esR,)™:

G0 = [T, )l = [T Ixery,| = [T p™" P

pEeS peS peS

Next, we compute ‘n;l(z) N Og;[qN]’"‘. Given Z = (z1,..-,Zm) € (O/(N))", ob-
serve that since O/(N) is a free Zy-module with basis {nt(a;), ..., T(0,)}, there exist
unique ¢/ € [0,N)NZ such that
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Then for z = (z1,...,z2m) € O™, it follows that 7y(z) = 7 if and only if
n
Z for +l,]N

for some ltj € 7Z. Moreover, since we need l,j € [—¢,q) NZ for each pair of indices j
and ¢, we deduce that

m,(2) N OslgN]"| = (29)™
We are ready to compute ‘ES N Og[gN]" ’ By the definition of A,(f), we have for any
fixed k and p:
. —k
A = i (H) (M) —1)" 0
Since we know from the last lemma that Es = 7t~ (J), where
YA
-1 p
(11 04,
pl(p) k=
pES
it immediately follows that
m
=TT Y iH) () — 1) 0
pl{p) k=0
pesS

Therefore, we conclude that
EsN OlgN)"| = (2q)™"}J]

= (2™ TT =2 [ Y iy () — 1) “one)].
pl(p) k=0

pEeS
as desired. OJ

We now compute the density of E.

Lemma 2. Using the previous notation, we have for any integral basis ‘B of O,

ot -oute = I1 [ B (-5 () |

pl(p)
pES
EsNO
Proof. Define the sequence {a;} by a; = W and let D denote the value

of the density in question.
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First, we consider the subsequence {ag }4en, where N = [ ,c5p". We claim that
this subsequence is constant. By the previous proposition along with the definitions
for N and D,,,

peS

=11 {ﬁi"(f’)<1_m(1;or))mk(m(lpr))k}'

pl{p) "k=0

Hence, {ag4n } is a constant subsequence and converges to D.
Next, we show that {a.. v} also converges to D for any ¢ € {1,2,...,N—1}, we
first find bounds for a, 4. To this end, note that

( 2gN >mn< < (2(q.|_1)N>mn
a U —— a a U e— .
N\ 2c+ 2gN = GetaN =g+ OV 9 1 2gN

By letting ¢ — oo and applying the Squeeze Theorem, we conclude that {ac;qv}
converges to D for any ¢ € {1,2,...,N — 1}. Finally, since {a., 4} converges to D
for any ¢ € {0,1,...,N — 1}, we conclude that {a;} converges to D. O

Note that the density in Lemma 2 is independent of the integral basis B used. Now
we are ready to establish to the main theorem of this section. For convenience, we
restate it here before proving it.

Theorem 3. Fixr, j,m € N such that j < m and rm > 2, and let K be an algebraic
number field over Q with ring of integers O. Then, the density of the set E consisting
of H-wise relatively r-prime ordered m-tuples of elements in O equals

I1 [i ie(H) (1~ m(lpr)>mk<m(lpr)>k]’

p k=0

where the product is over all nonzero prime ideals in O.
Proof. Fixt € N and let S; denote the set of the first 7 rational primes. For brevity,
we write £, = Eg,. Since E; D E,
Dy(E) < Dg(E;) = D(E).
Observe that the last equality is due to the existence of D(E). Letting t — oo,

D (E) H i (H) ! 1 m—k 1 k
o)< 1 £aon(1- )™ ()|
P k=0 0N(p") N(p")
It remains to show the opposite inequality. Noting that Dy (E;) D
it suffices to show that lim, .. Dg(E,\E) = 0.
To this end, we introduce the following notation. Let p be a prime ideal in O, p;
be the ™ rational prime, and M be a positive integer.

—Dg(E\E) < Dg(E),
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(1) We write p > M iff p lies over a rational prime greater than M.
(2) We write M > p iff the rational prime lying under p is less than M.

Using this notation, we can write

E\EC | (Hp) com

p=p J=1
where it is understood that H’}Ll p” is the subset of O such that each entry of the
m-tuple is an element of p”. Then, we see that

m

ENEYN s | [T (b0 i)

CM"=p=p, j=1
for some constant C > 0 dependent only on B, and thus
Dy(E\E) <limsup Y |(p" N Og[M])"|- (2M)~"".
M—eo CMr—psp,

By [2, Proposition 13], there exist constants c¢,d > 0 independent of M and p such
that

(2m)m 2M mn—1
+ c( + )

m(pr)m dm(pr)l/n

Using this bound along with the facts that 9(p) > p for every p lying above a fixed

rational prime p, and at most n prime ideals lie above a fixed rational prime, we

obtain

("N O5[M])"| <

Dg(E\E) < limsup
M—eo Cprpsp,

2M mn—1
<limsup Y [ 'fm+cn<—r/n+1) (2M)*’""}.
M—eo CMr>p>p, p dp

It remains to show that the right side goes to 0 as t — oo. First, observe that for all
sufficiently large M, we have 2M /dp"/™ > 1 and thus

2M mn—1 2\mn ]
1) e (2)T
(dpr/n + ( ) d prm

Then, by writing A = n+cn(2/d)™ which is a constant independent of M and p, we
deduce that

[m(;r)m +C(dm?3f)1 o+ 1)mﬂ71(2M)—mn}

— A - A

Dg(ENE) <li <

3(E\E) < lﬁfipmn; oS L
P>Dr k=p;

for all sufficiently large M.
o 1 o
Finally since /;1 o is convergent, we conclude that Dg(E,\E) = 0. O

To conclude this section, we now state a corollary that indicates how this main
result provides a generalisation of the work from [12].
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Corollary 1. Fixr, j,m € N such that j < m and rm > 2, and let K be an algebraic
number field over Q with ring of integers O. Then the density of the set of j-wise
relatively r-prime ordered m-tuples of elements in O equals

I (7)) (s) |

P k=0

Proof. Take H = K,(nj) as the hypergraph, and observe that

i (H) (7) fo<k<j—1
0 otherwise.

Applying Theorem 3 immediately yields the desired result. U

3. DENSITY OF H-WISE RELATIVELY r-PRIME ELEMENTS IN I [x]

Let IF, [x] be the ring of polynomials over the finite field F, where g = pk for some
prime p and k € N. The goal of this section is to derive a H-wise density statement
in IF,[x] by using methods developed in [4].

In order to define a suitable definition of density in F,[x], we begin by giving
an enumeration of the polynomials in F,[x]. Denoting the elements of I, as ap = 0,
ai,...,aq—1,let L be the set of all (aq,,aq,,aq,,...) whose entries are in I, and d; = 0
for all sufficiently large i. Then since non-negative integers have a unique expansion
base g, where ¢ is a positive integer greater than 1, we have a bijection ®: X — Z>
defined by

P(aqy,aq,,...) = Zd,-qi.
i=0

Using this bijection, we define for each j € Z>¢

filx)= Zadl.x", where j = 0(agq,,aq,,-..).
i=0
Note that Fy[x] = {fj(x) : j € Z>o}, thereby giving an ordering of the elements in
[F,[x]. Now, we are able to define a density in this ring.

Definition 5. Fix a positive integer m > 2, and let My be the subset of (F,[x])”
consisting of m-tuples of elements in F,[x] whose entries are taken from
{fo, f1,..., fw}. For any subset T C (IF,[x])", we define the upper and lower dens-
ities of T are respectively defined as

D(T) = h]Ianng and D(T) = 11]\1&1ng.

If D(T) = D(T), we say that its common value is called the density of 7 and denote
this as D(T).
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Let S be a finite set of irreducible polynomials in F, [x], and fix r, j,m € N satisfying
Jj < m. Fix a j-uniform hypergraph H, and let E denote the set of m-tuples of poly-
nomials from F[x] that are H-wise relatively r-prime with respect to all irreducible
polynomials in S.

For the following lemma and proposition, let

w (B = (TTEk/ )

be the surjective homomorphism induced by the family of natural projections
e Fylx] = Fy[x]/(f") for each f € S.

As in the algebraic integer case, the following lemma follows immediately from the
definition of H-wise relative r-primality of elements in I, [x].

Lemma 3. For a given irreducible polynomial f € S, let A,((f ) denote the set of

elements in (Fy[x]/(f"))™ where exactly k of their m components are 0, and these k
components form an independent vertex set in H. Then,

ES:EI(JI;ISIQ)A/(J'))'

Proposition 2. Let N = bg**e" — 1 where b € N, and F =[] res " Then,

m
[Es 0| = (bg ™" )" [Ta ™2 - Y ix(H) (g8 — 1)K (g )
fes k=0

Proof. Let ntr denote the reduction modulo /' homomorphism, and let
v (Bl /F)" = (TTE /)" = TT0E /),
fes fes

where the first part of y is induced by the Chinese Remainder Theorem and the
second part is an obvious isomorphism of free IF,[x]-modules.
Now we compute |7t ! (h(x)) N My]. By the Division Algorithm, we have that

{filx) f\lzoz{fs(x)-xdegF—i—ft(x) |0<r<q*f —1and0<s<b-—1}.
Then for any fixed s € {0, 1,...,b— 1}, the map 7t restricted to

qdegF -1

{£ix) -2+ ()N~ = el /(F)

is one-to-one. Since |ker(m)| = b™, we conclude that ;' (h(x)) N My| = b™.
We are now ready to compute |Es N My|. We know that Es = 1t~ (J), where

r=v (IUAY)

fESk=0
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Since for any fixed k € {O7 1,...,m} and f € S we have
’A | _ lk(H) (qrdegf _ 1)m—k(qrdegf)k,

we deduce that
m

|J| mdegF Hq—rmdegf Z lk rdegf _ 1)m—k(qrdegf)k.
fes

Therefore,
|Es N My| =" -|J|

degF m Hq—rmdegf Z lk rdegf _ l)m—k(qrdegf)k'
fes

We now find the density of E.
Lemma 4. Using the notation from Proposition 2,

TR0 (1 )" (aer) |

fes

|Es N M|
BEN

notational brevity, we let n = ¢
We first consider the subsequence {ap,—1 }pen. By Proposition 2, we find that

%_H[Z”‘ ( B rdlegf>mk<qrdlegf>k]

fes

Proof. Letaj = and let D be the value of the density in question. For

deg F

Hence, {ap,—1} trivially converges to D.
Next, we show {ap,.} converges to D as well for each ¢ € {0,1,...,n—2}. Ina
manner reminiscent of the proof to Lemma 4, we find that

< bn )m < << (b+1)n )m
—— App— a Y a 1
nter1) Ot Stne S\ e 1) At

Letting b — o, the Squeeze Theorem implies that {ap,. } converges to D for each ¢ €
{0,1,...,n—2}. Finally, since {ap.} converges to D for each c € {0,1,...,n— 1},
we conclude that {a;} converges to D, as desired.

Now we are ready to state and prove the main theorem of this section.

Theorem 4. Fix r,j,m € N such that j < m and rm > 2. Then the density of the
set of H-wise relatively r-prime ordered m-tuples of polynomials in IF4[x| equals

I, £ (- paer) ™ ()|

firred.
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where it is understood that the product is over all monic irreducible polynomials in
F,[x].
q

Proof. Fix a monic irreducible polynomial f € F,[x] and let K; denote the set
of ordered m-tuples (g1,...,gn») such that f divides the gcd of k of the entries from
(g1,---,8m) whenever these k entries form an independent vertex set. Then by Lemma

4, we have
1 m—k 1 k
Kf _I_Zlk < rdegf) (qrdegf> :

However for any x € [0, 1], Bernoulh s Inequality implies that
Zlk K1 —x)"* > (1 —x)" +mx(1 —x)""!

= (1= (14 (m—1)x)
>(1—=m—1x)(14+(m—1)x)
=1—(m—1)>x°.

Therefore, letting x = g~ 92/ yields

m—1\2
D(Kf) S (qrdegf) :
Next, let S; be the set of monic irreducible polynomials of a degree greater or equal

to r where r € N, and set E; = Es,. Moreover, let S be the set of all monic irreducible
polynomials in F,[x]. Then,

D s\s, Kr) N M
D(ENE) Slimsup‘(ufes\st )0 My|

N—soo | M|
ZfeSA\S Ky Myl
< limsu J
T VA
< Y D(Ky)
fGS\S,

Since D(K) = D(Ky), we obtain
D(E\E) < ), D(K)
fES'\S,
m—1\2
< L (s
— rd
feS\Sr(q egf)
o (m-1)?7
= 5 00):
j:;rl q*

where @( /) denotes the number of monic irreducible polynomials of degree j in Iy [x].
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Since any irreducible polynomial over [, [x] with degree j divides x? —x (which
has no multiple roots), we have j- @(; ) < ¢/. Therefore

2 m_12
D(E\E) < Z pE 1) <c(1’(q—)1)’

in which the last inequality follows from
i 1 B 1 i 1
et jq(erl)j o q(2r71)(t+1) 4 (ijthl)q(erl)j

1 o
= q@r=D(+D) Z q@r=Dj

1
ICED)
Next, since EN My C E, N\ My, it follows that
D(E) <D(E,) < D(E).

Similarly, since EN My = (E; N My) — ((E/\E) N My), we obtain

D(E) > D(E) - B(E\E,)
(m—1)?
dg—1)
Finally noting that D(E,) exists, we conclude by letting ¢ — oo that

D(E) = lim D(E,)

_tle H [Zlk ( - mlegf)m_k<qrdlegf)k}

fES

TSm0 ) ()

f irred.

> D(E;) -

and this concludes the proof. g

In a manner reminiscent of the previous section, we conclude by giving without
proof the analogue of Corollary 2 for [F,[x] as originally given in [4].

Corollary 2. Fix r, j,m € N such that j < m and rm > 2. Then the density of the
set of j-wise relatively r-prime ordered m-tuples of elements in F,[x] equals

LT ()0 ) ) ]

firred. ~k=0

where it is understood that the product is over all monic irreducible polynomials in
F,[x].
q
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