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Abstract. This paper is concerned with the interaction between logarithmic source term and
p-Laplacian term for nonlinear damped semilinear wave equation. We established the local ex-
istence and uniquenes under appropriate conditions.
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1. INTRODUCTION

In this work, we investigate the following p-Laplacian hyperbolic type equation
with logarithmic nonlinearity and nonlinear damping

Uy — div (\Vu|p72Vu> + e[ = [u|" P ulnlu|, x€Q, >0,
u(x,0) =up(x), u (x,0)=uw(x), x€EQ, (1.1)
u(x,t) =0, x€odQ, t>0,

where u € Wol’p (Q)\ {0} and uy € H} (Q) are given initial data and Q C R" (n > 1) is
abounded domain with smooth boundary dQ. The parameter k > 2 and the exponents
D, q satisfy

2
2<p<q<p<1+>. (1.2)
n

The logarithmic nonlinearity occured naturally in quantum mechanics, inflation
cosmolog, supersymmetric field theories, and a lot of different areas of physics such
as, optics, geophysics and nuclear physics It was a classical field equation whose
popularity increased especially when it was shown in [1,3]. The qualitative beha-
vior of solutions for problems with logarithmic nonlinearity in the absence of the
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p-Laplacian term

y — Au+ f (1) = |u|? uln |ul
have attracted the attention of several mathematicians. Some of the based work in
this subject are [2,5-7,9,10,12,16, 18, 19]. In [14], Nhan and Truong investigated

u; — div (]Vu\p_2Vu) — Auy = |uP 2 uln|ul, (1.3)

and they established the global existence, blow up and decay of the solutions for
p > 2. The problem (1.3) was studied by Cao and Liu[4] and they proved global
boundedness and blowing-up at o for 1 < p < 2. Ding and Zhou [&] studied the
problem (1.3) replaced |u|” > uln |u| with [u|? % uln|u|. They established global ex-
istence, blow up in finite time and blow up at infinite time. He et al. [11] studied
the decay of solutions the same problem. Our aim in this study will be existence
of solution hyperbolic type equation with logarithmic source term and p-Laplacian
term.

2. PRELIMINARIES

In order to state the main results to problem 1.1 more clearly, we start to our work
by introducing some notations, lemmas and definitions which will be used in this
paper. Throughout this paper, we denote

1
ol = Meell ey el = leellygrm gy = (el + 1 Vaell) ™

for 1 < m < co. We consider WO_I’m/ (Q) to denote the dual space of WO1 o () where
m' is Holder conjugate exponent for m > 1.
We define energy function as follows

1, » 1 1 1
E@) =5 hull+ IVl [l -t .
Q

Let us define some useful funcionals as follows
1

1 1
J(u) =~ Vup—f/uqlnudx—l——uq, (2.1)
(u) pH 15 . | 1 [ue] q2||Hq
Q
and
() = ”vuug—/yuwmwdx. 2.2)
Q

By the Gagliardo-Nirenberg multiplicative embedding inequality that J («) and I (u)
are continuous. Then, by (2.1) and (2.2), it tells us that

1 1 1 1
Jw)=-ITw)+|———||Vullf + = ||u|? (2.3)
W =1 (p q)u I+l
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and
E@) = 5 JulP 4 w).
We can define the mountain-pass level
d= uiggj(t) , (2.4

where X is the Nehari manifold, which is defined by

% = {ue Wy (@)\{0}: 1(w) =0}.
As in [17], we put the potential well depth
0<d= inf{sup](?uu) ‘ue Wol’p (Q), [Jullh # O} .
“ x>0

Now, we introduce the potential well U and its corresponding set K
U= {u EWP(Q): I(u) >0, J(u) < d} u{o},
K= {u EWSP(Q): I(u) <0, J(u) < d}.

Lemma 1. Forany u € WOI’I7 (Q), we get
llly < Cp[Vull,, for u € H ()
forall1 <p< % ifn>p; 1 <p<oifn<p, where Cp, is the best embedding
constant.
Lemma 2 ([13, Chapter II, Lemma 1.1]).
(i) For any function u € Wol’p (Q), we have
Hqu S BQvP HVMHp7
forall g€ (1,00 if n < p,and 1 < q < % if n > p. The best constant By,
depends only on Q, n, p and q. We will denote the constant B, , by B),.
(ii) Forany u € Wol’p (Q),p>1andr>1,we have
1—
lully < ClIVullf lull, ™,

where C is a positive constant
<1 1>(1 1 1)1
e G | Gt
roq n p r
and

e forp>n=1,r<g<o
e forp>n=1r<g<o

e forn>1landp<n,qec [r,%] zfrﬁ%andqe [r,%} zfrﬁ%
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e forp=n>1,r<g<o
o forp>n>1,r<qg<oo.

Lemma 3. E(t) is a nonincreasing function, fort > 0
E'(t) = — |l <0.
Proof. Multiplying the equation (1.1) by «, and integrating on Q, we have
/u,,u,dx—/div (|Vu]p72Vu> utdx—l—/|u,|k71u,dx: /uq_2u1n|u|utdx,
Q Q Q Q

d ({1, , 1 1 1 ‘
— | = —_||V 17_7/ 11 d _ 9| — _
ar | 2 Il + Vel e e In Juf e+ =5 [l o[l

k
E'(1) = —|luelg-
U
Lemma 4. Suppose that . > 0, u € Wol’p (Q)\{0} and |[ul|, # O. Then we get
) lim J (Au) =0, limJ (Au) = —oo;
(i) lim J(Au) =0, limJ (Au)

(ii) there exists a unique \* such that

d

(iii) J (Au) is strictly decreasig on * < A < oo, strictly increasing on 0 < A < A,
and takes maximum at A = A*;
(iv) For any A > 0, we get

J >0, 0<A<Ay,
I(Au) = kaJ (Au) =4 =0, A=A%, (2.5)
<0, AV <A<eoo
Proof.
(i) Itis obvious that by the definition of J (u),

J () = 11) AVl + qlz af? ;/(ku)qln ] dx
Q

Ve A A1 A1
= *HWHZJrﬁHuHZ—*IHWHMHZ—*/ln\uHu!"dX-
p q q q A

By virtue of [|u[|? # 0, we obtain %g?)g (A) =0, }{ggg (A) = —oo.
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(ii) Now, differentiating J (Au) with respect to A, we obtain

%J(ku) = ! HVMHZ—M_lan ||u\|3—kq_l/|u|qln|u| dx
Q
=A k”’ZHVuHZ—M’ZInWHu||g—7ﬂ’2/|u\qln|u\ dx
Q
=Ao(1)
where

o) =2 HVuHﬁ—?ﬂ‘zlnw||u\|g—kq_2/|u]qln\u]dx
Q

We observe from 2 < p < g that

o(A) =2 HVuHﬁ—?ﬂ’zan HuHZ—?ﬂ’z/\u]qln\u] dx
Q

— 0972 [ W Vul|2 I ] ] - / Jul*In [u] dx
Q

=AI2 (xA?~? —yIn|A| —2)

where x = [[Vul|? >0,y = [|u[|] > 0 and z zg\ulqln\ul dx. Also we obtain

¢ (M) = (g=2)A7 (AP —yIn[A| = 2) + 177 (x(p—q) W7 )
=M [(p=2)xM 7 =y ((g—2)In]A +1) — (¢ —2)2] .
Let
g =(p=2)x M7 =y((g—2)InA[+1) - (¢-2)z
which together with 2 < p < ¢ satisfies that

limg(}) =, limg ()

and
—q)(p— DN~ (g—1
Now, we deduce that there exist a unique Ao such that g (A) [,_»,= 0, which
satisfies
¢ (A) >0, for0<A<A,
¢ (A) =0, forA=A,
¢ (M) <0, forA>A.
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Therefore, we conclude that there exists a unique A; > Ao such that ¢ (A) [y, =
0 and ¢ (A) is monotone decreasing A > A;. Hence, there exists A* > A; such

that <||Vu||2 +(p(k)) = 0,which means %J (Au) |pps -
(iii) From (ii), we can see clearly

d
—_ <A<\
ko(?»u)>0 for0 <A <A%,
Lyuy <0 fork <h<

o u or ,

which gives (iii).
(iv) Thus, by definition of 7 (1) we have the desired results such that

1 () = W | Vaal|2 = A9 In ] [Ju]} ¢ — m/ /910 |ue] dx = X%J M) (2.6)
Q

We obtain (2.5) from the proof of the (ii) and (2.6).
O

Lemma 5.

(i) d is positive and there exists a positive function u € X such that J (u) =d
(ii) The depth of potential well d is defined as

- i
4= (qpqp> <%) o
Proof.

(i) By (2.3), our aim is to show that there is a positive function # € X such that
J(u)=d.Let {uy},_,; C X be a minimum sequence of J (u), i.e.

lim J (uy,) =d.

m—oo

Hence, we have {|u,|},,_, C X is a minimum sequence of J (u) from |u,| C
uy € X and J (|up|) = J (Jum|) Morever, we can assume that u,, > 0 a.e. for all
m & N.

Otherwise, we have already observed that, J (u) is coercive on X which sat-
isfies that {u,,}"_, C X is bounded in u € W, ” (Q). Let o, > 0 is a sufficiently
small such that g + o < %, so the embedding WO1 P ey 9T is compact, and
there is a function u and subsequence {u,, }, _,, still denoted by {u,,},,_, , such
that

Uy, — u, weakly in WOL” (Q),
U — u,strongly in L77* (Q) |

Uy — U,a.e. in Q.
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Thus, we get u > 0 a.e. in Q. By Lebesgue dominated convergence theorem,
we see that

/|u|qln|u| dx = lim /|um|‘11n|um|dx, @.7)
m—yoo

Q Q
/|u|q dx = lim /|um|q dx. (2.8)
m—oo
Q Q
The weak lower semicontinuity of ||. ||, 1, implies
0
[Vull, < tim inf [ Vir, |- 29)

Combining definition of the J («) and I (u) , (2.7) - (2.9), we conclude that

J () < Tim infJ (u,) =d, (2.10)
1(w) < lim inf1 (i) = 0. @2.11)

Thanks to u,, € X one has u,, € Wol"p (@) and I (u,,) = 0. Therefore, by using
the fact
1
Inx < —x%*forx>1 (2.12)
eQl
and the Sobolev embedding inequality, we have

Hvumugz/yummnyum|dx
Q

_ / 4| 1n 16| i+ / |10 4]
{xeQ:|um(x)|>1} {x€Q:|um (x)|<1}
< |t |7 10 |14y | dx

{x€Q:|um(x)|>1}

1 + +
<o [ mltarsclvape,

{xeQ:|up(x)|>1}

for some positive constant C, which implies

| Inuy,| dx = ||Vu,||2 > C. (2.13)
p
Q

From (2.13) and (2.7), we reproduce

/yu|qlnyu| dx>C.
Q
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Therefore, we obtain u € Wol’p (). By (2.11), we easily have I (1) < 0. Now,
we show that / (1) = 0. Indeed, if it false, we get I (1) < 0, then by Lemma 2.4,
there exists a A* such that 0 < A* < 1 and I (A*u) = 0. Thus, we conclude that

d<J(u)
— Lo+ <‘ - 1) IV )2 4+ [Au]
q P q Pg? a

11 . 1o
_ (pq) IV Rl + s [l

X 1 1 1
<y ( (p —q) IVull + Huuz)

1 1 1
VP Jim P q
<7 timint (1= 1) 191+ )
< (AP lim infJ (u,) = (M)’d < d.
m—soo
This is impossible, so we derive I (¢) = 0 and u,, € X. From (2.10) and (2.4),
we obtain J (1) = d, and the proof of (i) is complete.
(ii) By I (u) = 0 and the definition of 7 (1), we obtain
||vu|y§:/yu|qlnyu|dx. (2.14)
Q
Then, by using tha fact (2.12) and Sobolev embedding theorem, (2.14) becomes

1 C
)4 g+ q+a
[Vully < — lullgie < = [IVall)

where C > 0, which means that

1

(%)* < [|Vall,- (2.15)

From the (i) we know that, u € X. By I (1) =0, (2.3) and (2.15), we note that

1 1 1 1 1 1
Juzlu+<—> Vup—l—uqz<—) Vul?
(u) p (u) i [Vully 7 lullg e IVully

S (q—p> <ea>q+”p
~\ pq C

where g > p, which implies that

g <q—p> (ea>q+”p
rq c

This completes the proof.
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3. LOCAL EXISTENCE OF SOLUTION FOR E (0) < d

In this part, we established the global existence of the problem (1.1). Firstly, we
start the definition of the weak solution to the problem (1.1).

Definition 1. A function u(t) is called a weak solution to problem (1.1) on Q X
[07 T) Y l:f‘
welL” (O,T;Wol”’ (Q))

and

w €L (O,T;Lk (Q))
satisfy for 1 € [0,T) and liw € W, ? (Q)
( g{un (x,t)w (x) dx+ ({ g (2,2)[* 2wy (x,0) w(x) dx
+ [ |Vu(x,0) [P~ Vi (x,1) Vw (x) dx
—t{ln |u (x,8)|ud=2 (x,t) w(x) dx,
w(x,0)=uo(x),  u(x,0)=u(x).

Theorem 1.
Rational case: Let (up,u;) € Wol’p (Q)x LK (Q) and2 < p< g < p(1+32) for
every T > 0. Then problem (1.1) has a unique weak solution
ueC ([O,T) W (Q) (Q)) . wecC ([0, T);Lf (9)) .

Irrational case: Moreover, u satisfies the following energy inequality
t
N+ [lu)ids<EQ©)  foro<e<T.

Proof. To consider the well-posedness of problem (1.1), we employ the standard
Faedo—Galerkin method. The proof will consist of three steps.

Step 1: Approximate Problem: Let {w j};’:l be the orthogonal basis of W, ”
(Q) space. We take the finite dimensional space

Vin =span{wy,wo,...,wp}.
Let the projections of the initial data on the finite dimensional subspace V,,
be given by
]
Um (0) = o (x Z ajmw; (x) = ug inW,"”(Q),

Ut (0) = 11 ( Z bimwi(x) —u  inLF(Q), (3.1)
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for j=1,2,...,m.
We construct the approximate solutions u,, (x,z) for problem (1.1) in the

form
m

Up (x,1) = Z hjm (t)w; (x) (3.2)
j=1
which satisfy the approximate problem in V,,

(umttaws) + (|Vum|I772 V”m; VWS)

= <|Mm‘q_2 Um 10g ‘Mm‘ 7Ws) ds — (‘Mmt‘k_z umtvws) (3.3)
for conditions
up (x) =Y ajw;(x) = up in W()l’p (Q),
ul' (x) = ijzl bjwj(x) = uy in LF(Q),

s=1,2,...m, where w € V,;, as m — oo.

This leads to a system of ordinary differantial equations for unknown func-
tions A (). Based on standard existence theory for ordinary differantial
equation, one can obtain functions

hj: [0,tn) = R, j=12,....,m,
which satisfy (3.3) in a maximal interval [0,7,,), 0 <, < T and therefore
€ C ({o,zm) WP (Q)) e € C([0,6) 1 H' (Q)) .
Step 2: A priori estimates: Our purpose is to show that #,, = 7 and that the
local solution is uniformly bounded independent of m and ¢. Now, taking

the derivative of (3.3) with respect to t, multiplying the obtained equation by
h;nj () and summing for j=1,2,...,m, we obtain

(Unmar, W) + (’“mt’k_z ”mtaW> + (’V”m‘p_z Vum,Vw> = (‘“m‘q_zln |t 7W>
for Vw € H} (Q) . Let us replace w by u,, in and integrate by parts we obtain

t
d k
(1) == [l (9 ds
0

where

1 1 1 1
En(t) =5 et + ’ [Vitmll}, — q/lum!qln\uml dx+? [l -
Q
Then Integrating (1.2) with respect to ¢ from O to ¢, we have

Em(t)+/Hum, (s)|[kds = Ep(0). (3.4)
0
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Otherwise, for oo > 0, we obtain

1
[ 10 ] dx < 255
Q

where o is taken such that 0 < o < p (1 + %) —g. Then by using Lemma 2.2
and Young’s inequality

ab < 8d"+C(8) !

. 1—
with k = q%xand | = %fm d€(0,1), we have

[ 10 ] dix < B[t 5 £

Q
p(1—)(g+a)

< 8| Vet |h+C (8) [|um |, (3.5)

(11 11+1‘1
'u_2q—|-0c n p 2)

Here, we take o > 0 such that p —u(g+o) and 0 < o < p (1 —l—%) — ¢ hold.
Let

where

poPU—p(@+e) plntqg+ta)—n(g+ae)
p—u(qg+o) p(2+n)—n(q+a)
then 7 > 1 because 2 < p<qg<p (1 + %) . Morever, by the combination of

(3.2), (3.4) and (3.5), we obtain

Enlt) < C1+Ca [ E(s)ds, (3.6)
0

where Cy, C; are positive constants independent of m. By using of the Gron-

wall inequality, we have a positive consatant
ct

T< ———
Cy(h—1)

such that
E,(t) <Cr 3.7
forany ¢t € [0,7].
Subsequently, there exists the solution of (3.3) on [0, 7], for any m.
On the other hand, multiplying (3.3) by h;; j () and summing for s, we
derive .
EHL‘WHZ‘i‘J(”m) = En(0) (3.8)

for vVt € [0,7T].
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By the continuity of J and (3.1), we consider
En(0)<C (3.9)

where C is the positive constant for any m.
Therefore, it follows from the definion of E(z), (3.5), (3.7)-(3.9) and using
Holder’s inequality, we have

1 1 1 1
C2Ent) =5 Humr||2+; Vit |}; — q/\umlqlnuml dX+? lml

Q

1 1 1
\v4 P q q
> » ” ”m”p qQ/|”m‘ 1n|“m‘ dx qz Huqu

1 8 c®), . 1
_ p_ - p__ —~\"/ . q
> pIIVumII,, qHVumH,, . [[umll2 t [l

18 C(3) 1
» h -ph q
> <p - q> IVl === En (1) F 25 el
1 3 1
p q
- (,, - q> [Vienlly g2 lamly = €5 o
Combining (3.10) and (3.8), we have
||Mm||L°°(o,T;W1~P(Q)) <€,
||Mmt||L°°(0,T;H](Q)) =C.

It follows from (3.4) and (3.7) that

(3.11)

<C. (3.12)

Vu,|P2v
H| I/lm| Um LOTW-1r(Q) —

Step 3: Passage to the limit: Combining (3.11)-(3.12), there are functions u
and x and a subsequence of {u,,}, _, which we still denoted by {u}, _,
such that

Uy, — u, weakly*in L™ (0, T;Wol"’7 (Q)) ,
Uy — Uy, weakly in L™ (0, T;LF (Q)) ,
Vit |P 2 Vit — y, weakly*in L™ (0, T;WO_I’p/ (Q)) :
By Aubin-Lions—Simon Lemma we obtain
Uy, — u strongly in C([0, T] ;Wol’p (Q)),
Uy — u, a.e. (x,1) € Qx(0,7),
which implies that
|72 0 |tty| — |7 2 uln|u] e, (x,1) €Qx (0,T). (3.13)
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On the other side, since 2 < p < g < p(1+2) < %, we can choose

o> 0 such that (g—1+pu)q' < %. So, by direct calculation and Sobolev
inequality, we note that

[l ax= [ ol a0 el dx
Q {xeQ:|um(x,t)|<1} {x€Q:|um (x,0)|>1}

<(elg=) 1@+ [ ) dx

{xeQu:|upm (x,t)|>1}

< C4+Cs || Vit (1)]| 79 < € (3.14)

where W,y (x,1) = |t4m]? 2t In |t | . And we have used
‘x”fllogx‘ <(e(p—1))"" for0O<x<1,

while x~*logx < L for x > 1, o0 > 0, where W, (x,1) = |ty 72ty I [t .
And we have used ’x”_l logx‘ <(e(p—1))""for0<x< 1, while x *logx <

iforxz 1,0 >0.
Hence, from (3.13), (3.14) and Lions Lemma [15], we get

|ttt 10 |1t | = || %t || weakly*in L (O,T;Lq/ (Q)) )

Now, taking the limitin (3.1) asm — oo, it follows that u satisfies the initial
conditions u (x,0) = ug in WO1 7 (Q) and i, (x,0) = u; in H' (Q) . Additionally,
passing to the limit in (3.3), it follows that t € [0, 7|

t t
(ut,ws)—|—//|Vu]p_2Vqusds+//]umt]k_zumtwsds
0 Q 0 Q
t

— / <|u\q_2ulog |ul ,ws> ds+ (up,wy)
0

forallw e Wol’p (Q).
Step 3: Uniqueness: : Firstly, we consider linear problem

=iy (VPEV) o,

:f(ul)_f(MZ)a (3.15)
v(x,0)=vo(x), v (x,0)=vi(x), x€Q,
v:%zo, xX€0QXRT.

where f (s) = |s|? sIn|s|. Suppose there are two solutions u; and u; to prob-
lem (1.1). Then, v = u; — u, solves the problem (3.15).
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Multiplying both sides of the first equation for above problem (3.15) by v,

and integrating the obtained result over Q x (0,7), then we obtain

t t t
//v,lvldxds+//]v,|k dxds—l—//\Vv]pJVvVv,dxds
0 Q 0 Q 0 Q

t
://(]u1]q72u11n|u1|—|u2|q72uzln\u2\> vedxds.
0 Q

Making use of mean value theorem, we get

|f () = f (u2)| x| f (Suy + (1= 0) uz) (ug — uz)|
< [1+ (g — 1) In (w1 +Bu2) ] | (1 +Duz)|* 2 uy — o]

where 0 < O < 1. Inserting (3.17) into (3.16), we denote

t t t
//v,,v,dxds—i—//\vt]k dxds—i—//Wv\p_szVv,dxds
0 Q 0 Q 0 Q

< O/Q/ ([1 +(g— 1) In|(uy +Sup)|] |(uy —i—ﬁuz)\q_z) v dxds

1
S//](m—i—f}uz)\q_zvv,dxds
0 Q

t

+(q— 1)//1n](u1 + Oup)| | (w1 4 Ouz)|% > v, dxds.
0 Q

(3.16)

(3.17)

(3.18)

Morever, from the Lebesgue and Sobolev inequality and Holder inequality,

we obtain

t t
-2 -2
//|(u1+ﬂu2)\q vv,dxdsS/Hm+19u2HZ(q72)HvH%HV,Hst
0 Q 0

t
< CL2Co [ 191+ 9% [Vl i ds
0

t
< [ 199l wllpds.
0
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t
< [ 19wl ds
0

785

(3.19)

where Cs, Cg, C7 are the best constants satisfying Sobolev inequality. We

.. 2
used the condition n(g—2) < p (1+2).

Now, our purpose is to estimate the second term of the (3.18). Further-
more, taking o > 0 such that (g—2+0a)n < p(1+2), and by using the

calculation similar to (3.14), it follows that
t
n
// ‘ln\(ul +0ua) | |(m1 —|—19u2)]qf2‘ v dxds
0 Q

<(e(qg—1))"|Q|+ (ecr)™ fgquoc)n (Viy +ﬁvu2)||(qfl+oc)n
S (e (q - 1))7’1 |Q’ + (e(x)*ﬂ s(;(]*lnLOC)I’l ”(VM[ +ﬁvu2)||1(;]*1+(x)n
where Cg is the optimal constant satisfying

(21 +0u2) | (1o < [[(Vitr + V)[4
Inserting (3.20) into (3.18), we obtain

t

(q—l)//ln|(u1—1—13u2)||(u1—|—ﬁu2)|q72vvtdxds
0 Q

1
t n

<(q=1) [ | [ inl(a+dus) (o + 80 | ]2 [l
0 Q

t t
<G [ 19l 1w llads < Cuo [ 1991, Ivalads
0 0

Inserting (3.19) and (3.21) into (3.18) and using v (x,0) = 0, v, (x,0) =

have
t t 5
2 2 »
P4 191 < € 1901, Indads < [ (1l + (19915)° ).
0 0
Using the algebraic inequality

1
zvéz+1§<1+a>(z+o¢), Vz>0,0<v<1,a>0,

we obtain
2

(Ivvi12)” < 141w

(3.20)

3.21)

0, we
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where p > 2. The uniqueness is derived from the Gronwall’s inequality.

Step 3: Energy inequality : We will show that the solutions u satisfy (3.4).
First, we prove that

/|u\41n|u\dx: fim /|um|41n|um\dx, (3.22)
m—soo
Q Q
/|u!q dx = lim /|um|q dx. (3.23)
m-—yoo
Q Q

Additionally, for each fixed ¢ > 0, by similar calculation to (3.18) and Holder
inequality, we obtain

[ lnl 10| d— [ ud1nju]
Q Q

< [ alounl* " lonl+ 01" lu—un dx
Q

<4 [ (Jlowl" " mlou
Q

<Cllu—unl|,—0
d

an
[t [l dx| < [ Yl = ul?]
Q Q Q

< q/ |(52m|q*1 |u— ty,| dx
Q

1

q 7 4
dx) it tonlly [0 2 t — ,

< qlloam|ld lu—wnll, < Cllu—un|l, =0,
as m — oo, where 6; = u+ Viuy, 0 < 9; < 1 (i=1,2). Morever, (3.22) and
(3.23) hold.
On the other hand, from initial and boundary condition of the (3.3), it

follows that E (uom,u1m) — E (ug,u;) = E (0) as m — co. Therefore, making
use of Fatou Lemma and (3.4), we note that

t
1 1
3 el vl + 0/ Ju ()] ds

< —
T 2 m—oo

t
1 1
lim inf [ ||? + — 1im inf\|vum\|§+/ lim inf||um (s)[[“ ds
p m—oo m—soo
0
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T m—oo

t
o 1
< lim inf 2\|um,|2+p||wm||§+/||ut ()IIf ds
0

m—yoo

1 1
— lim inf | E,, (0)—|—q/|um|qln|um| dr— o
Q

1 1
=E(0 —i—f/uqlnudx—— ul|?.
(0) qQH |u| quHq

So that the proof is completed. U
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