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1. INTRODUCTION

In this work, we investigate the following p-Laplacian hyperbolic type equation
with logarithmic nonlinearity and nonlinear damping

utt −div
(
|∇u|p−2

∇u
)
+ |ut |k−2 ut = |u|q−2 u ln |u| , x ∈ Ω, t > 0,

u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(1.1)

where u ∈W 1,p
0 (Ω)\{0} and u1 ∈ H1

0 (Ω) are given initial data and Ω ⊂ Rn (n ≥ 1) is
a bounded domain with smooth boundary ∂Ω. The parameter k ≥ 2 and the exponents
p,q satisfy

2 < p < q < p
(

1+
2
n

)
. (1.2)

The logarithmic nonlinearity occured naturally in quantum mechanics, inflation
cosmolog, supersymmetric field theories, and a lot of different areas of physics such
as, optics, geophysics and nuclear physics It was a classical field equation whose
popularity increased especially when it was shown in [1, 3]. The qualitative beha-
vior of solutions for problems with logarithmic nonlinearity in the absence of the
© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC
BY 4.0.

http://dx.doi.org/10.18514/MMN.2024.4360
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


772 N. IRKIL

p-Laplacian term
utt −∆u+ f (ut) = |u|q−2 u ln |u|

have attracted the attention of several mathematicians. Some of the based work in
this subject are [2, 5–7, 9, 10, 12, 16, 18, 19]. In [14], Nhan and Truong investigated

ut −div
(
|∇u|p−2

∇u
)
−∆ut = |u|p−2 u ln |u| , (1.3)

and they established the global existence, blow up and decay of the solutions for
p > 2. The problem (1.3) was studied by Cao and Liu[4] and they proved global
boundedness and blowing-up at ∞ for 1 < p < 2. Ding and Zhou [8] studied the
problem (1.3) replaced |u|p−2 u ln |u| with |u|q−2 u ln |u|. They established global ex-
istence, blow up in finite time and blow up at infinite time. He et al. [11] studied
the decay of solutions the same problem. Our aim in this study will be existence
of solution hyperbolic type equation with logarithmic source term and p-Laplacian
term.

2. PRELIMINARIES

In order to state the main results to problem 1.1 more clearly, we start to our work
by introducing some notations, lemmas and definitions which will be used in this
paper. Throughout this paper, we denote

∥u∥m = ∥u∥Lm(Ω) , ∥u∥1,m = ∥u∥W 1,m
0 (Ω)

= (∥u∥m
m +∥∇u∥m

m)
1
m

for 1 < m < ∞. We consider W−1,m′

0 (Ω) to denote the dual space of W 1,m′

0 (Ω) where
m′ is Hölder conjugate exponent for m > 1.

We define energy function as follows

E(t) =
1
2
∥ut∥2 +

1
p
∥∇u∥p

p −
1
q

∫
Ω

|u|q ln |u| dx+
1
q2 ∥u∥q

q .

Let us define some useful funcionals as follows

J (u) =
1
p
∥∇u∥p

p −
1
q

∫
Ω

|u|q ln |u| dx+
1
q2 ∥u∥q

q , (2.1)

and

I (u) = ∥∇u∥p
p −

∫
Ω

|u|q ln |u| dx. (2.2)

By the Gagliardo-Nirenberg multiplicative embedding inequality that J (u) and I (u)
are continuous. Then, by (2.1) and (2.2), it tells us that

J (u) =
1
q

I (u)+
(

1
p
− 1

q

)
∥∇u∥p

p +
1
q2 ∥u∥q

q (2.3)
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and
E (t) =

1
2
∥ut∥2 + J (u) .

We can define the mountain-pass level

d = inf
u∈ℵ

J (t) , (2.4)

where ℵ is the Nehari manifold, which is defined by

ℵ =
{

u ∈W 1,p
0 (Ω)\{0} : I (u) = 0

}
.

As in [17], we put the potential well depth

0 < d = inf
u

{
sup
λ≥0

J (λu) : u ∈W 1,p
0 (Ω) ,∥u∥p

p ̸= 0

}
.

Now, we introduce the potential well U and its corresponding set K

U =
{

u ∈W 1,p
0 (Ω) : I (u)> 0, J (u)< d

}
∪{0} ,

K =
{

u ∈W 1,p
0 (Ω) : I (u)< 0, J (u)< d

}
.

Lemma 1. For any u ∈W 1,p
0 (Ω) , we get

∥u∥s ≤Cp ∥∇u∥p , for u ∈ H1
0 (Ω)

for all 1 ≤ p ≤ pn
n−p if n > p; 1 ≤ p < ∞ if n ≤ p, where Cp is the best embedding

constant.

Lemma 2 ([13, Chapter II, Lemma 1.1]).
(i) For any function u ∈W 1,p

0 (Ω) , we have

∥u∥q ≤ Bq,p ∥∇u∥p ,

for all q ∈ [1,∞] if n ≤ p, and 1 ≤ q ≤ np
n−p if n > p. The best constant Bq,p

depends only on Ω, n, p and q. We will denote the constant Bp,p by Bp.

(ii) For any u ∈W 1,p
0 (Ω) , p ≥ 1 and r ≥ 1, we have

∥u∥q ≤C∥∇u∥µ
p ∥u∥1−µ

r ,

where C is a positive constant

µ =

(
1
r
− 1

q

)(
1
n
− 1

p
+

1
r

)−1

,

and
• for p ≥ n = 1, r ≤ q ≤ ∞

• for p ≥ n = 1, r ≤ q ≤ ∞

• for n > 1 and p < n, q ∈
[
r, np

n−p

]
if r ≤ np

n−p and q ∈
[
r, np

n−p

]
if r ≤ np

n−p
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• for p = n > 1, r ≤ q < ∞

• for p > n > 1, r ≤ q ≤ ∞.

Lemma 3. E(t) is a nonincreasing function, for t ≥ 0

E ′ (t) =−∥ut∥k
k ≤ 0.

Proof. Multiplying the equation (1.1) by ut and integrating on Ω, we have∫
Ω

uttut dx−
∫
Ω

div
(
|∇u|p−2

∇u
)

ut dx+
∫
Ω

|ut |k−1 ut dx =
∫
Ω

uq−2u ln |u|ut dx,

d
dt

1
2
∥ut∥2 +

1
p
∥∇u∥p

p −
1
q

∫
Ω

|u|q ln |u| dx+
1
q2 ∥u∥q

q

=−∥ut∥k
k ,

E ′ (t) =−∥ut∥k
k .

□

Lemma 4. Suppose that λ > 0, u ∈W 1,p
0 (Ω)\{0} and ∥u∥q ̸= 0. Then we get

(i) lim
λ→0+

J (λu) = 0, lim
λ→∞

J (λu) =−∞;

(ii) there exists a unique λ∗ such that

d
dλ

J (λu) |λ=λ∗= 0;

(iii) J (λu) is strictly decreasig on λ∗ < λ < ∞, strictly increasing on 0 ≤ λ ≤ λ∗,
and takes maximum at λ = λ∗;

(iv) For any λ ≥ 0, we get

I (λu) = λ
d

dλ
J (λu) =


> 0, 0 < λ < λ∗,

= 0, λ = λ∗,

< 0, λ∗ < λ < ∞.

(2.5)

Proof.

(i) It is obvious that by the definition of J (u) ,

J (λu) =
1
p
∥λ∇u∥p

p +
1
q2 ∥λu∥q

q −
1
q

∫
Ω

(λu)q ln |λu| dx

=
λp

p
∥∇u∥p

p +
λq

q2 ∥u∥q
q −

λq

q
ln |λ|∥u∥q

q −
λq

q

∫
Ω

ln |u| |u|q dx.

By virtue of ∥u∥p
p ̸= 0, we obtain lim

λ→0
g(λ) = 0, lim

λ→∞

g(λ) =−∞.
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(ii) Now, differentiating J (λu) with respect to λ, we obtain

d
dλ

J (λu) = λ
p−1 ∥∇u∥p

p −λ
q−1 ln |λ|∥u∥q

q −λ
q−1

∫
Ω

|u|q ln |u| dx

= λ

λ
p−2 ∥∇u∥p

p −λ
q−2 ln |λ|∥u∥q

q −λ
q−2

∫
Ω

|u|q ln |u| dx


= λϕ(λ)

where

ϕ(λ) = λ
p−2 ∥∇u∥p

p −λ
q−2 ln |λ|∥u∥q

q −λ
q−2

∫
Ω

|u|q ln |u| dx

We observe from 2 < p < q that

ϕ(λ) = λ
p−2 ∥∇u∥p

p −λ
q−2 ln |λ|∥u∥q

q −λ
q−2

∫
Ω

|u|q ln |u| dx

= λ
q−2

λ
p−q ∥∇u∥p

p − ln |λ|∥u∥q
q −

∫
Ω

|u|q ln |u| dx


= λ

q−2 (xλ
p−q − y ln |λ|− z

)
where x = ∥∇u∥p

p ≥ 0, y = ∥u∥q
q ≥ 0 and z =

∫
Ω

|u|q ln |u| dx. Also we obtain

ϕ
′ (λ) = (q−2)λ

q−3 (xλ
p−q − y ln |λ|− z

)
+λ

q−3 (x(p−q)λ
p−q − y

)
= λ

q−3 [(p−2)xλ
p−q − y((q−2) ln |λ|+1)− (q−2)z

]
.

Let
g(λ) = (p−2)xλ

p−q − y((q−2) ln |λ|+1)− (q−2)z

which together with 2 < p < q satisfies that

lim
λ→0

g(λ) = ∞, lim
λ→∞

g(λ) =−∞

and

g′ (λ) =
(p−q)(p−1)λp−q − (q−1)z

λ
< 0.

Now, we deduce that there exist a unique λ0 such that g(λ) |λ=λ0= 0, which
satisfies 

ϕ′ (λ)> 0, for 0 < λ < λ0,

ϕ′ (λ) = 0, for λ = λ0,

ϕ′ (λ)< 0, for λ > λ0.
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Therefore, we conclude that there exists a unique λ1 > λ0 such that ϕ(λ) |λ=λ1=
0 and ϕ(λ) is monotone decreasing λ > λ1. Hence, there exists λ∗ > λ1 such
that

(
∥∇u∥2 +ϕ(λ)

)
= 0,which means d

dλ
J (λu) |λ=λ∗ .

(iii) From (ii), we can see clearly

d
dλ

J (λu)> 0 for 0 ≤ λ ≤ λ
∗,

d
dλ

J (λu)< 0 for λ
∗ < λ < ∞,

which gives (iii).
(iv) Thus, by definition of I (u) we have the desired results such that

I (λu) = λ
p ∥∇u∥p

p −λ
q ln |λ|∥u∥q

q −λ
q
∫
Ω

|u|q ln |u| dx = λ
d

dλ
J (λu) (2.6)

We obtain (2.5) from the proof of the (ii) and (2.6).
□

Lemma 5.
(i) d is positive and there exists a positive function u ∈ ℵ such that J (u) = d

(ii) The depth of potential well d is defined as

d =

(
q− p

pq

)(eα

C

) p
q+α−p

Proof.
(i) By (2.3), our aim is to show that there is a positive function u ∈ ℵ such that

J (u) = d. Let {um}∞

m=1 ⊂ ℵ be a minimum sequence of J (u) , i.e.

lim
m→∞

J (um) = d.

Hence, we have {|um|}∞

m=1 ⊂ ℵ is a minimum sequence of J (u) from |um| ⊂
um ∈ ℵ and J (|um|) = J (|um|) .Morever, we can assume that um > 0 a.e. for all
m ∈ N.

Otherwise, we have already observed that, J (u) is coercive on ℵ which sat-
isfies that {um}∞

m=1 ⊂ ℵ is bounded in u ∈W 1,p
0 (Ω) . Let α > 0 is a sufficiently

small such that q+α < np
n−p , so the embedding W 1,p

0 ↪→ Lq+α is compact, and
there is a function u and subsequence {um}∞

m=1 , still denoted by {um}∞

m=1 , such
that

um → u,weakly in W 1,p
0 (Ω) ,

um → u,strongly in Lq+α (Ω) ,

um → u,a.e. in Ω.
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Thus, we get u ≥ 0 a.e. in Ω. By Lebesgue dominated convergence theorem,
we see that ∫

Ω

|u|q ln |u| dx = lim
m→∞

∫
Ω

|um|q ln |um| dx, (2.7)

∫
Ω

|u|q dx = lim
m→∞

∫
Ω

|um|q dx. (2.8)

The weak lower semicontinuity of ∥.∥W 1,p
0

implies

∥∇u∥p ≤ lim
m→∞

inf∥∇um∥p . (2.9)

Combining definition of the J (u) and I (u) , (2.7) - (2.9), we conclude that

J (u)≤ lim
m→∞

infJ (um) = d, (2.10)

I (u)≤ lim
m→∞

inf I (um) = 0. (2.11)

Thanks to um ∈ ℵ one has um ∈ W 1,p
0 (Ω) and I (um) = 0. Therefore, by using

the fact

lnx ≤ 1
eα

xα for x ≥ 1 (2.12)

and the Sobolev embedding inequality, we have

∥∇um∥p
p =

∫
Ω

|um|q ln |um| dx

=
∫

{x∈Ω:|um(x)|≥1}

|um|q ln |um| dx+
∫

{x∈Ω:|um(x)|<1}

|um|q ln |um| dx

≤
∫

{x∈Ω:|um(x)|≥1}

|um|q ln |um| dx

≤ 1
eα

∫
{x∈Ω:|um(x)|≥1}

|um|q+α dx ≤C∥∇um∥p+α

p+α
,

for some positive constant C, which implies∫
Ω

|um|q ln |um| dx = ∥∇um∥p
p ≥C. (2.13)

From (2.13) and (2.7), we reproduce∫
Ω

|u|q ln |u| dx ≥C.
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Therefore, we obtain u ∈ W 1,p
0 (Ω) . By (2.11), we easily have I (u) ≤ 0. Now,

we show that I (u) = 0. Indeed, if it false, we get I (u)< 0, then by Lemma 2.4,
there exists a λ∗ such that 0 < λ∗ < 1 and I (λ∗u) = 0. Thus, we conclude that

d ≤ J (λ∗u)

=
1
q

I (λ∗u)+
(

1
p
− 1

q

)
∥∇(λ∗u)∥p

p +
1
q2 ∥λ

∗u∥q
q

=

(
1
p
− 1

q

)
∥∇(λ∗u)∥p

p +
1
q2 ∥λ

∗u∥q
q

≤ (λ∗)p
((

1
p
− 1

q

)
∥∇u∥p

p +
1
q2 ∥u∥q

q

)
≤ (λ∗)p lim

m→∞
inf

((
1
p
− 1

q

)
∥∇um∥p

p +
1
q2 ∥um∥q

q

)
≤ (λ∗)p lim

m→∞
infJ (um) = (λ∗)p d < d.

This is impossible, so we derive I (u) = 0 and um ∈ ℵ. From (2.10) and (2.4),
we obtain J (u) = d, and the proof of (i) is complete.

(ii) By I (u) = 0 and the definition of I (u) , we obtain

∥∇u∥p
p =

∫
Ω

|u|q ln |u| dx. (2.14)

Then, by using tha fact (2.12) and Sobolev embedding theorem, (2.14) becomes

∥∇u∥p
p <

1
eα

∥u∥q+α

q+α
≤ C

eα
∥∇u∥q+α

p

where C > 0, which means that(eα

C

) 1
q+α−p ≤ ∥∇u∥p . (2.15)

From the (i) we know that, u ∈ ℵ. By I (u) = 0, (2.3) and (2.15), we note that

J (u) =
1
q

I (u)+
(

1
p
− 1

q

)
∥∇u∥p

p +
1
q2 ∥u∥q

q ≥
(

1
p
− 1

q

)
∥∇u∥p

p

≥
(

q− p
pq

)(eα

C

) p
q+α−p

where q > p, which implies that

d =

(
q− p

pq

)(eα

C

) p
q+α−p

.

This completes the proof.
□
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3. LOCAL EXISTENCE OF SOLUTION FOR E (0)< d

In this part, we established the global existence of the problem (1.1). Firstly, we
start the definition of the weak solution to the problem (1.1).

Definition 1. A function u(t) is called a weak solution to problem (1.1) on Ω×
[0,T ) , if

u ∈ L∞

(
0,T ;W 1,p

0 (Ω)
)

and
ut ∈ L∞

(
0,T ;Lk (Ω)

)
satisfy for t ∈ [0,T ) and llw ∈W 1,p

0 (Ω)

∫
Ω

utt (x, t)w(x) dx+
∫
Ω

|ut (x, t)|k−2 ut (x, t)w(x) dx

+
∫
Ω

|∇u(x, t)|p−2
∇u(x, t)∇w(x) dx

=
∫
Ω

ln |u(x, t)|uq−2 (x, t)w(x) dx,

u(x,0) = u0 (x) , ut (x,0) = u1 (x) .

Theorem 1.
Rational case: Let (u0,u1) ∈W 1,p

0 (Ω)×Lk (Ω) and 2 < p < q < p
(
1+ 2

n

)
for

every T > 0. Then problem (1.1) has a unique weak solution

u ∈C
(
[0,T ) ;W 1,p

0 (Ω)(Ω)
)
, ut ∈C

(
[0,T ) ;Lk (Ω)

)
.

Irrational case: Moreover, u satisfies the following energy inequality

E (t)+
t∫

0

∥ut (s)∥k
k ds ≤ E (0) for 0 ≤ t ≤ T.

Proof. To consider the well-posedness of problem (1.1), we employ the standard
Faedo–Galerkin method. The proof will consist of three steps.

Step 1: Approximate Problem: Let
{

w j
}∞

j=1 be the orthogonal basis of W 1,p
0

(Ω) space. We take the finite dimensional space

Vm = span{w1,w2, . . . ,wm} .
Let the projections of the initial data on the finite dimensional subspace Vm
be given by

um (0) = um0 (x) =
m

∑
j=1

a jmw j (x)→ u0 in W 1,p
0 (Ω) ,

umt (0) = um1 (x) =
m

∑
j=1

b jmw j (x)→ u1 in Lk (Ω) , (3.1)
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for j = 1,2, . . . ,m.
We construct the approximate solutions um (x, t) for problem (1.1) in the

form

um (x, t) =
m

∑
j=1

h jm (t)w j (x) (3.2)

which satisfy the approximate problem in Vm

(umtt ,ws)+
(
|∇um|p−2

∇um,∇ws

)
=
(
|um|q−2 um log |um| ,ws

)
ds−

(
|umt |k−2 umt ,ws

)
(3.3)

for conditions{
um

0 (x) = ∑
m
j=1 a jw j (x)→ u0 in W 1,p

0 (Ω) ,

um
1 (x) = ∑

m
j=1 b jw j (x)→ u1 in Lk (Ω) ,

s = 1,2, . . .m, where w ∈Vm as m → ∞.
This leads to a system of ordinary differantial equations for unknown func-

tions hm
j (t). Based on standard existence theory for ordinary differantial

equation, one can obtain functions

h j : [0, tm)→ R, j = 1,2, . . . ,m,

which satisfy (3.3) in a maximal interval [0, tm) , 0 < tm ≤ T and therefore
um ∈C

(
[0, tm) ;W 1,p

0 (Ω)
)
, umt ∈C

(
[0, tm) ;H1 (Ω)

)
.

Step 2: A priori estimates: Our purpose is to show that tm = T and that the
local solution is uniformly bounded independent of m and t. Now, taking
the derivative of (3.3) with respect to t, multiplying the obtained equation by
h′m j (t) and summing for j=1,2,. . . ,m, we obtain

(umtt ,w)+
(
|umt |k−2 umt ,w

)
+
(
|∇um|p−2

∇um,∇w
)
=
(
|um|q−2 ln |um| ,w

)
for ∀w ∈ H1

0 (Ω) . Let us replace w by umt in and integrate by parts we obtain

d
dt

Em(t) =−
t∫

0

∥umt (s)∥k
k ds

where

Em(t) =
1
2
∥umt∥2 +

1
p
∥∇um∥p

p −
1
q

∫
Ω

|um|q ln |um| dx+
1
q2 ∥um∥q

q .

Then Integrating (1.2) with respect to t from 0 to t, we have

Em(t)+
t∫

0

∥umt (s)∥k
k ds = Em(0). (3.4)
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Otherwise, for α > 0, we obtain∫
Ω

|um|q ln |um| dx ≤ 1
eα

∥um∥q+α

q+α
,

where α is taken such that 0 < α < p
(
1+ 2

n

)
−q. Then by using Lemma 2.2

and Young’s inequality

ab ≤ δak +C (δ)bl

with k = p
q+α

and l = p(1−µ)(q+α)
p−µ(q+α) for δ ∈ (0,1) , we have∫

Ω

|um|q ln |um| dx ≤ B∥∇um∥µ(q+α)
p ∥um∥

(1−µ)(q+α)
2

≤ δ∥∇um∥p
p +C (δ)∥um∥

p(1−µ)(q+α)
p−µ(q+α)

2 , (3.5)

where

µ =

(
1
2
− 1

q+α

)(
1
n
− 1

p
+

1
2

)−1

.

Here, we take α > 0 such that p−µ(q+α) and 0 < α < p
(
1+ 2

n

)
−q hold.

Let

h =
p(1−µ)(q+α)

p−µ(q+α)
=

p(n+q+α)−n(q+α)

p(2+n)−n(q+α)

then h > 1 because 2 < p < q < p
(
1+ 2

n

)
. Morever, by the combination of

(3.2), (3.4) and (3.5), we obtain

Em(t)≤C1 +C2

t∫
0

Eh
m(s)ds, (3.6)

where C1, C2 are positive constants independent of m. By using of the Gron-
wall inequality, we have a positive consatant

T <
C1−h

1
C2 (h−1)

such that
Em(t)≤CT (3.7)

for any t ∈ [0,T ] .
Subsequently, there exists the solution of (3.3) on [0,T ] , for any m.

On the other hand, multiplying (3.3) by h′
′

m j (t) and summing for s, we
derive

1
2
∥umt∥2 + J(um) = Em(0) (3.8)

for ∀t ∈ [0,T ] .
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By the continuity of J and (3.1), we consider

Em(0)≤C (3.9)

where C is the positive constant for any m.
Therefore, it follows from the definion of E(t), (3.5), (3.7)-(3.9) and using

Hölder’s inequality, we have

C ≥ Em(t) =
1
2
∥umt∥2 +

1
p
∥∇um∥p

p −
1
q

∫
Ω

|um|q ln |um| dx+
1
q2 ∥um∥q

q

≥ 1
p
∥∇um∥p

p −
1
q

∫
Ω

|um|q ln |um| dx+
1
q2 ∥um∥q

q

≥ 1
p
∥∇um∥p

p −
δ

q
∥∇um∥p

p −
C (δ)

q
∥um∥2h

2 +
1
q2 ∥um∥q

q

≥
(

1
p
− δ

q

)
∥∇um∥p

p −
C (δ)

q
pphE ph

m (t)+
1
q2 ∥um∥q

q

≥
(

1
p
− δ

q

)
∥∇um∥p

p +
1
q2 ∥um∥q

q −C3. (3.10)

Combining (3.10) and (3.8), we have

∥um∥L∞(0,T ;W 1,p(Ω)) ≤C,

∥umt∥L∞(0,T ;H1(Ω)) ≤C. (3.11)

It follows from (3.4) and (3.7) that∥∥∥|∇um|p−2
∇um

∥∥∥
L∞(0,T ;W−1,p′(Ω))

≤C. (3.12)

Step 3: Passage to the limit: Combining (3.11)-(3.12), there are functions u
and χ and a subsequence of {um}∞

m=1 which we still denoted by {um}∞

m=1
such that

um → u, weakly∗in L∞

(
0,T ;W 1,p

0 (Ω)
)
,

umt → ut ,weakly in L∞
(
0,T ;Lk (Ω)

)
,

|∇um|p−2
∇um → χ weakly∗in L∞

(
0,T ;W−1,p′

0 (Ω)
)
.

By Aubin–Lions–Simon Lemma we obtain

um → u strongly in C([0,T ] ;W 1,p
0 (Ω)),

um → u, a.e. (x, t) ∈ Ω× (0,T ) ,

which implies that

|um|q−2 um ln |um| → |u|q−2 u ln |u| ,a.e. (x, t) ∈ Ω× (0,T ) . (3.13)
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On the other side, since 2 < p < q < p
(
1+ 2

n

)
< np

n−p , we can choose
α > 0 such that (q−1+µ)q′ < np

n−p . So, by direct calculation and Sobolev
inequality, we note that∫

Ω

|ψm (x, t)|q
′
dx =

∫
{x∈Ω:|um(x,t)|≤1}

|ψm (x, t)|q
′
dx+

∫
{x∈Ω:|um(x,t)|>1}

|ψm (x, t)|q
′
dx

≤ (e(q−1))−q′ |Ω|+(eα)−q′
∫

{x∈Ω:|um(x,t)|>1}

|ψm (x, t)|(q−1+α)q′ dx

≤C4 +C5 ∥∇um (t)∥(q−1+α)q′
p ≤C (3.14)

where ψm (x, t) = |um|q−2 um ln |um| . And we have used∣∣xp−1 logx
∣∣≤ (e(p−1))−1 for 0 < x < 1,

while x−α logx ≤ 1
eα

for x ≥ 1, α > 0, where ψm (x, t) = |um|q−2 um ln |um| .
And we have used

∣∣xp−1 logx
∣∣≤ (e(p−1))−1 for 0< x< 1, while x−α logx≤

1
eα

for x ≥ 1, α > 0.
Hence, from (3.13), (3.14) and Lions Lemma [15], we get

|um|q−2 um ln |um| → |u|q−2 u ln |u| weakly∗in L∞

(
0,T ;Lq′ (Ω)

)
.

Now, taking the limit in (3.1) as m→∞, it follows that u satisfies the initial
conditions u(x,0)= u0 in W 1,p

0 (Ω) and ut (x,0)= u1 in H1 (Ω) . Additionally,
passing to the limit in (3.3), it follows that t ∈ [0,T ]

(ut ,ws)+

t∫
0

∫
Ω

|∇u|p−2
∇u∇wsds+

t∫
0

∫
Ω

|umt |k−2 umtwsds

=

t∫
0

(
|u|q−2 u log |u| ,ws

)
ds+(u1,ws)

for all w ∈W 1,p
0 (Ω) .

Step 3: Uniqueness: : Firstly, we consider linear problem
vtt + |vt |k−2 vt −div

(
|∇v|p−2

∇v
)

= f (u1)− f (u2) ,
(x, t) ∈ Ω× (0,T ) ,

v(x,0) = v0 (x) , vt (x,0) = v1 (x) , x ∈ Ω,

v = ∂v
∂n = 0, x ∈ ∂Ω×R+.

(3.15)

where f (s)= |s|q−2 s ln |s| . Suppose there are two solutions u1 and u2 to prob-
lem (1.1). Then, v = u1 −u2 solves the problem (3.15).
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Multiplying both sides of the first equation for above problem (3.15) by vt
and integrating the obtained result over Ω× (0,T ), then we obtain

t∫
0

∫
Ω

vttvt dxds+
t∫

0

∫
Ω

|vt |k dxds+
t∫

0

∫
Ω

|∇v|p−2
∇v∇vtdxds

=

t∫
0

∫
Ω

(
|u1|q−2 u1 ln |u1|− |u2|q−2 u2 ln |u2|

)
vt dxds. (3.16)

Making use of mean value theorem, we get

| f (u1)− f (u2)|×
∣∣ f ′ (ϑu1 +(1−ϑ)u2)(u1 −u2)

∣∣
≤ [1+(q−1) ln |(u1 +ϑu2)|] |(u1 +ϑu2)|q−2 |u1 −u2| (3.17)

where 0 < ϑ < 1. Inserting (3.17) into (3.16), we denote

t∫
0

∫
Ω

vttvt dxds+
t∫

0

∫
Ω

|vt |k dxds+
t∫

0

∫
Ω

|∇v|p−2
∇v∇vt dxds

≤
t∫

0

∫
Ω

(
[1+(q−1) ln |(u1 +ϑu2)|] |(u1 +ϑu2)|q−2

)
vvt dxds

≤
t∫

0

∫
Ω

|(u1 +ϑu2)|q−2 vvt dxds

+(q−1)
t∫

0

∫
Ω

ln |(u1 +ϑu2)| |(u1 +ϑu2)|q−2 vvt dxds. (3.18)

Morever, from the Lebesgue and Sobolev inequality and Hölder inequality,
we obtain

t∫
0

∫
Ω

|(u1 +ϑu2)|q−2 vvt dxds ≤
t∫

0

∥u1 +ϑu2∥q−2
n(q−2) ∥v∥ 2n

n−2
∥vt∥2 ds

≤Cq−2
5 C6

t∫
0

∥∇u1 +ϑ∇u2∥q−2
2 ∥∇v∥2 ∥vt∥2 ds

≤C7

t∫
0

∥∇v∥2 ∥vt∥2 ds,
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≤C7

t∫
0

∥∇v∥p ∥vt∥2 ds, (3.19)

where C5, C6, C7 are the best constants satisfying Sobolev inequality. We
used the condition n(q−2)< p

(
1+ 2

n

)
.

Now, our purpose is to estimate the second term of the (3.18). Further-
more, taking α > 0 such that (q−2+α)n < p

(
1+ 2

n

)
, and by using the

calculation similar to (3.14), it follows that
t∫

0

∫
Ω

∣∣∣ln |(u1 +ϑu2)| |(u1 +ϑu2)|q−2
∣∣∣n vvt dxds

≤ (e(q−1))−n |Ω|+(eα)−nC(q−1+α)n
8 ∥(∇u1 +ϑ∇u2)∥(q−1+α)n

≤ (e(q−1))−n |Ω|+(eα)−nC(q−1+α)n
8 ∥(∇u1 +ϑ∇u2)∥(q−1+α)n

p (3.20)

where C8 is the optimal constant satisfying

∥(u1 +ϑu2)∥(q−1+α)n ≤ ∥(∇u1 +ϑ∇u2)∥(q−1+α)n .

Inserting (3.20) into (3.18), we obtain

(q−1)
t∫

0

∫
Ω

ln |(u1 +ϑu2)| |(u1 +ϑu2)|q−2 vvt dxds

≤ (q−1)
t∫

0

∫
Ω

ln |(u1 +ϑu2)| |(u1 +ϑu2)|q−2

 1
n

∥v∥ 2n
n−2

∥vt∥2 ds

≤C9

t∫
0

∥∇v∥2 ∥vt∥2 ds ≤C10

t∫
0

∥∇v∥p ∥vt∥2 ds. (3.21)

Inserting (3.19) and (3.21) into (3.18) and using v(x,0) = 0,vt (x,0) = 0, we
have

∥vt∥2 +∥∇v∥p
p ≤C

t∫
0

∥∇v∥p ∥vt∥2 ds ≤
t∫

0

(
∥vt∥2 +

(
∥∇v∥p

p

) 2
p
)
.

Using the algebraic inequality

zv ≤ z+1 ≤
(

1+
1
α

)
(z+α) , ∀z ≥ 0, 0 < v ≤ 1, α ≥ 0,

we obtain (
∥∇v∥p

p

) 2
p ≤ 1+∥∇v∥p

p
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where p > 2. The uniqueness is derived from the Gronwall’s inequality.
Step 3: Energy inequality : We will show that the solutions u satisfy (3.4).

First, we prove that∫
Ω

|u|q ln |u| dx = lim
m→∞

∫
Ω

|um|q ln |um| dx, (3.22)

∫
Ω

|u|q dx = lim
m→∞

∫
Ω

|um|q dx. (3.23)

Additionally, for each fixed t > 0, by similar calculation to (3.18) and Hölder
inequality, we obtain∣∣∣∣∣∣
∫
Ω

|um|q ln |um| dx−
∫
Ω

|u|q ln |u| dx

∣∣∣∣∣∣
≤

∫
Ω

∣∣∣q |σ1m|q−1 ln |σm|+ |σ1m|q−1
∣∣∣ |u−um| dx

≤ q
∫
Ω

(∣∣∣|σ1m|q−1 ln |σ1m|
∣∣∣q′ dx

) 1
q′

∥u−um∥q +∥σ1m∥q−1
q ∥u−um∥q

≤C∥u−um∥q → 0

and∣∣∣∣∣∣
∫
Ω

|um|q dx−
∫
Ω

|u|q dx

∣∣∣∣∣∣≤
∫
Ω

||um|q −|u|q| dx

≤ q
∫
Ω

|σ2m|q−1 |u−um| dx

≤ q∥σ2m∥q−1
q ∥u−um∥q ≤C∥u−um∥q → 0,

as m → ∞, where σi = u+ϑium, 0 < ϑi < 1 (i = 1,2). Morever, (3.22) and
(3.23) hold.

On the other hand, from initial and boundary condition of the (3.3), it
follows that E (u0m,u1m)→ E (u0,u1) = E (0) as m → ∞. Therefore, making
use of Fatou Lemma and (3.4), we note that

1
2
∥ut∥2 +

1
p
∥∇u∥p

p +

t∫
0

∥ut (s)∥k
k ds

≤ 1
2

lim
m→∞

inf∥umt∥2 +
1
p

lim
m→∞

inf∥∇um∥p
p +

t∫
0

lim
m→∞

inf∥umt (s)∥k
k ds
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≤ lim
m→∞

inf

1
2
∥umt∥2 +

1
p
∥∇um∥p

p +

t∫
0

∥ut (s)∥k
k ds


= lim

m→∞
inf

Em (0)+
1
q

∫
Ω

|um|q ln |um| dx− 1
q2 ∥um∥q

q


= E (0)+

1
q

∫
Ω

|u|q ln |u| dx− 1
q2 ∥u∥q

q .

So that the proof is completed. □
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