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MOCTAR TRAORE, HAKAN METE TAŞTAN, AND SIBEL GERDAN AYDIN

Received 17 August, 2022

Abstract. We investigate a Riemannian manifold with almost η-Ricci-Bourguignon soliton struc-
ture. We use the Hodge-de Rham decomposition theorem to make a link with the associated
vector field of an almost η-Ricci-Bourguignon soliton. Moreover, we show that a nontrivial,
compact almost η-Ricci-Bourguignon soliton of constant scalar curvature is isometric to the Eu-
clidean sphere. Using some results obtaining from almost η-Ricci Bourguignon soliton, we give
the integral formulas for compact orientable almost η-Ricci-Bourguignon soliton.
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1. INTRODUCTION

The notion of Ricci solitons correspond to self-similar of Ricci flow introduced
in [15] by R.S. Hamilton. Perelman [19] proved that any compact Ricci solitons
is gradient. In the compact case there are nontrivial Ricci solitons [10]. Most of
the proofs for compact case are found in [12] or [13]. Moreover, there do not exist
gradient Ricci solitons in the noncompact case [3] and [17]. On the other hand, Naber
[18] showed that noncompact shrinking solitons are gradient in some special cases.

Recently, Pigola et al. [21] introduced the notion of almost Ricci soliton. By
adding the condition on the parameter λ to be a variable function, they modified
the definition of Ricci soliton. Likewise, many authors studied the almost η-Ricci
solitons, for example, Blaga [1] investigated almost η-Ricci solitons in (LCS)n man-
ifolds, Siddiqi [22] studied η-Ricci Yamabe solitons on Riemannian submersions
from Riemannian manifold. Generalizing for this notion Dwivedi studied in [14]
the almost Ricci-Bourguignon solution and Soylu [23] examined Ricci-Bourguignon
soliton and almost soliton with concurrent vector field. Blaga and Taştan [7] also
studied almost Ricci-Bourguignon solitons with some special potential vector fields
and almost η-Ricci-Bourguignon solitons on a doubly warped product. Dwivedi
[14] derived integral formulas for compact Ricci-Bourguignon solitons and Ricci-
Bourguignon almost solitons. In addition, Aquino et al. [2] and Barros and Riberio
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[5, 6] presented integral formula for the compact almost Ricci solitons and general-
ized m-quasi Einstein metrics.

In the present paper, we give basic background of an almost η-Ricci-Bourguignon
solitons and definitions of gradient solitons in section 2. In section 3, we investig-
ated compact almost η-Ricci-Bourguignon solitons using Hodge-de Rham potential
decomposition. Moreover, we study gradient η-Ricci-Bourguignon soliton and com-
pact almost η-Ricci-Bourguignon soliton when the potential vector field is conformal.
We proved that the potential vector field of a compact almost η-Ricci-Bourguignon
soliton is a Killing vector field under some conditions. In section 4, we derived the
integral formulas for gradient compact almost η-Ricci-Bourguignon soliton.

2. PRELIMINARIES

In this section, we recall the fundamental definitions and notions for the further
study.

On an n-dimensional Riemannian manifold (Mn,g) Ricci-Bourguignon solitons
are self-similar solutions to Ricci-Bourguignon flow [8]

∂

∂t
g(t) =−2(Ric−ρRg), (2.1)

where Ric is the Ricci tensor of the metric, R is the scalar curvature of the Riemannian
metric g and ρ ∈ R is a real constant.

A Riemannian manifold (Mn,g) is called Ricci-Bourguignon soliton if the metric
g satisfies the following equation

Ric+
1
2

£ξg = (λ+ρR)g. (2.2)

where £ξg denotes the Lie derivative of the metric g along a vector field ξ, Ric is a
Ricci tensor, R is a curvature tensor, ρ and λ are constant. Considering η = d f (X) is
a 1-form, the Riemannian manifold (Mn,g) is called η-Ricci-Bourguignon soliton if
there exist a vector field ξ, a smooth function f and λ ∈ R a constant such that

Ric+
1
2

£ξg = (λ+ρR)g+µd f ⊗d f , (2.3)

It is called expanding, steady or shrinking, respectively, if λ < 0, λ = 0, λ > 0. The
manifold is called a gradient η-Ricci-Bourguignon soliton when the vector field ξ =
∇ f is a gradient of a differentiable function f : Mn → R such that

Ric+∇
2 f = (λ+ρR)g+µd f ⊗d f , (2.4)

where ∇2 f stands for the Hessian of f . The η-Ricci-Bourguignon soliton is called
trivial when either the vector field ξ is trivial or the potential f is constant. Hence
the vector field is called Killing vector field, i.e £ξg = 0. If n ≥ 3 and ξ is a Killing
vector field, η-Ricci-Bourguignon soliton becomes trivial soliton. Then we get an
Einstein manifold in that case, since λ is constant. If λ is a smooth function in
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(2.3), then (Mn,g) is called almost η-Ricci-Bourguignon soliton and is denoted by
(Mn,g,ξ,λ,µ).

Using the Hodge-de Rham decomposition theorem (see [2]), we shall decompose
the vector field ξ over a compact oriented Riemannian manifold as a sum of the
gradient of a function h and a free divergence vector field Y, i.e.

ξ = ∇h+Y,

where divY = 0. We may indicate a proof of this decomposition for the understanding
of his completeness. In fact, we consider the 1-form ξ♭. We decompose ξ♭ with the
help of the Hodge-de Rham decomposition theorem as follows

ξ
♭ = dα+δβ+ γ. (2.5)

Considering Y = (δβ+ γ)♯ and (dα)♯ = ∇h to arrive at the desired result. For more
simplicity let us call h the Hodge-de Rham potential.

3. MAIN RESULTS

In this section we investigate a compact almost η-Ricci-Bourguignon soliton and
we give a characterization for a gradient η-Ricci-Bourguignon soliton.

We remark that the same result obtained in [2] for compact Ricci solitons also
works for compact almost η-Ricci-Bourguignon solitons. We give the next theorem
for more explicitly.

Theorem 1. Let (Mn,g,ξ,λ,µ) be a compact almost η-Ricci-Bourguignon soliton.
If Mn is also a gradient almost η-Ricci-Bourguignon soliton with potential f , then,
up to a constant, it agrees with the Hodge-de Rham potential h.

Proof. For an almost η-Ricci-Bourguignon soliton (Mn,g,ξ,λ,µ), we have

(1−nρ)R+divξ = nλ+µ|∇ f |2. (3.1)

The Hodge-de Rham decomposition allows us to write divξ = ∆h. Hence we get

(1−nρ)R+∆h = nλ+µ|∇ f |2. (3.2)

If (Mn,g,ξ,λ,µ) is also a compact gradient almost η-Ricci-Bourguignon soliton, then
from equation (2.4) we have

(1−nρ)R+∆ f = nλ+µ|∇ f |2. (3.3)

Substracting equations (3.2) and (3.3), we deduce ∆( f − h) = 0. Using Hopf’s the-
orem we conclude that f = h+ c, hence the proof is completed. □

On a Riemannian manifold (M,g), consider the function u = e−µ f , then we have
∇u =−µe−µ f ∇ f , which can be found in [11]. Hence we get

∇
2 f −µd f ⊗d f =−∇2u

µu
(3.4)
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and
∆u
uµ

= ((1−nρ)R−nλ) . (3.5)

Then using (2.4), we get

Ric−∇2u
µu

= λg+ρRg. (3.6)

Recall that a vector field ∇u on a Riemannian manifold (M,g) is called a conformal
vector field if there exists a smooth function ψ : M → R such that 1

2 £∇ug = ψg. The
conformal vector field is nontrivial if ψ ̸= 0. Suppose ∇u is nontrivial conformal
vector field, then we can write 1

2 £∇ug = ∇2u = ∆u
n g. Putting (3.5) in (3.6), we get

Ric =
R
n

g, (3.7)

where R is constant scalar curvature. Therefore, we deduce that Mn is an Einstein
manifold if and only if ∇u is a conformal vector field. For more detail, (see [6]).

Suppose ∇u is nontrivial conformal vector field, i.e. £∇ug = 2ψg, then (3.6) be-
comes

Ric = (λ+ρR+
ψ

µu
)g. (3.8)

Taking the trace of (3.8) and covariant derivative we get

(1−nρ)∇R = n∇

(
λ+

ψ

µu

)
. (3.9)

Now taking the divergence of (3.8) and using ∇R = 2divRic, we have(
1
2
−ρ

)
∇R = ∇

(
λ+

ψ

µu

)
. (3.10)

Thus (3.9) and (3.10) imply

(1−nρ)∇R = n
(

1
2
−ρ

)
∇R, (3.11)

which implies that R and λ+ ψ

µu are constant.
The next theorem is a characterization for gradient almost η-Ricci-Bourguignon

soliton when ξ is a conformal vector field and generalizes Theorem 3 of [2].

Theorem 2. Let (Mn,g,ξ,λ,µ), n ≥ 3, be a gradient η-Ricci-Bourguignon soliton
and ξ = ∇u is a conformal vector field. Then the following conditions holds:

(1) If M is compact then ∇u is a Killing vector field, so that (Mn,g,ξ,λ,µ) is
trivial soliton,

(2) If M is noncompact gradient η-Ricci-Bourguignon soliton then (Mn,g,ξ,λ,µ)
is isometric to a Euclidean space or ∇u is Killing vector field.
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Proof. If ∇u is a conformal vector field, then there exist a smooth function ψ on
M such that

£∇ug = 2ψg. (3.12)

Therefore, taking the trace of (3.12), we get

div∇u = nψ. (3.13)

Since M is compact, integrating (3.13), we obtain

0 =
∫

M
2div∇udM = nVol(M)ψ, (3.14)

which implies that ψ = 0. Then ∇u is Killing vector field. Hence, the first assertion
is proved.

For the second, we have 1
2 £∇ug = ∇2u = ψg, since ψ constant from (3.11). Then

if ψ ̸= 0, we may use a result of Tashiro ([24], Theorem 2) to conclude that Mn is
isometric to the Euclidean space. If ψ = 0, thus ∇u is a Killing vector field and the
proof is completed. □

With the help of Theorem 4.2 of [25], we obtain the following theorem for compact
almost η-Ricci-Bourguignon soliton.

Theorem 3. Let (Mn,g,ξ,λ,µ), n ≥ 3, be a compact almost η-Ricci-Bourguignon
soliton with n ≥ 3. If ξ = ∇u is a nontrivial conformal vector field, then Mn is iso-
metric to a Euclidean sphere.

Proof. If ξ = ∇u is nontrivial conformal vector field, then £∇ug = 2ψg, where
ψ ̸= 0. Then from (3.11), R and λ+ ψ

µu are constant. We may use [22, Lemma 2.3,
pp. 52] to conclude that R ̸= 0, otherwise ψ = 0. Hence from (3.6), we get

£∇u Ric = 2
(

λ+ρR+
ψ

µu

)
ψg.

Since λ+ρR+ ψ

µu is constant, we have

£∇u Ric =
(

λ+ρR+
ψ

µu

)
£∇ug = 2

(
λ+ρR+

ψ

µu

)
ψg.

Now we may apply Theorem 4.2 (pp. 54 of [25]) to conclude that Mn is isometric to
a Euclidean sphere. Hence the proof is completed. □

Remark 1. Mn is isometric to a Euclidean sphere if it is trivial or ∇u is conformal
vector field.

On a Riemannian manifold (Mn,g) the following formulas hold [20]:

div(£X g)(X) =
1
2

∆|X |2 −|∇X |2 +Ric(X ,X)+∇X divX , (3.15)
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or in (1,1)-tensor notation

div∇
2 f = Ric(∇ f )+∇∆ f (3.16)

and
1
2

∆|∇ f |2 = |∇2 f |2 +Ric(∇ f ,∇ f +g(∇∆ f ,∇ f )) . (3.17)

These previous formulas allows us to obtain the following lemma which is a general-
ization of an almost η-Ricci-Bourguignon soliton.

Lemma 1. Let (Mn,g,ξ,λ,µ) be an almost η-Ricci-Bourguignon soliton. Then
the following equations hold:

(1−nρ)

2
∆|ξ|2 = (1−nρ)|∇ξ|2 +(nρ−1)Ric(ξ,ξ)+nρ∇ξ divξ

+2ρ(1−nρ)g(∇R,ξ)− (n(2ρ+1)−2)g(∇λ,ξ) (3.18)

+2µ(1−nρ)|ξ|2 divξ−µnρξ(|ξ|2)

and
(1−nρ)

2
(∆−∇ξ)|ξ|2 = (1−nρ)|∇ξ|2 +λ(nρ−1)|ξ|2

+ρ(nρ−1)R|ξ|2 +µ(nρ−1)|ξ|4 +nρ∇ξ divξ (3.19)

+2ρ(1−nρ)g(∇R,ξ)− (n(2ρ+1)−2)g(∇λ,ξ)

+2µ(1−nρ)|ξ|2 divξ−µnρξ(|ξ|2).

Proof. From (2.3), we have

2divRic+div(£ξg) = 2∇λ+2ρ∇R+2µdiv(d f ⊗d f ). (3.20)

Using div(d f ⊗d f ) = ξdivξ+∇ξξ and taking the trace of (2.3), we get (1−nρ)R+

divξ = nλ+µ|ξ|2. With the help of covariant derivative operator, we have

(1−nρ)∇ξR+∇ξ(divξ) = n∇ξλ+µ∇ξ|ξ|2. (3.21)

Using the contracted second Bianchi identity ∇R= 2divRic and (3.15), (3.20), (3.21),
we get

∇ξ(divξ) = ng(∇λ,ξ)+(nρ−1)∇ξR+µξ(|ξ|2)
= ng(∇λ,ξ)+2(nρ−1)divRic(ξ)+µξ(|ξ|2)
= ng(∇λ,ξ)+µξ(|ξ|2)− (nρ−1)div(£ξg)(ξ)+2(nρ−1)g(∇λ,ξ)

+2ρ(nρ−1)g(∇R,ξ)+2µ(nρ−1)|ξ|2 divξ+µ(nρ−1)ξ(|ξ|2)

= (1−nρ)

[
1
2

∆|ξ|2 −|∇ξ|2 +Ric(ξ,ξ)+∇ξ divξ

]
+2ρ(nρ−1)g(∇R,ξ)+(n(2ρ+1)−2)g(∇λ,ξ)+µξ(|ξ|2)
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+2µ(nρ−1)|ξ|2 divξ+µ(nρ−1)ξ(|ξ|2)

=
(1−nρ)

2
∆|ξ|2 − (1−nρ)|∇ξ|2 +(1−nρ)Ric(ξ,ξ)

+(1−nρ)∇ξ divξ+2ρ(nρ−1)g(∇R,ξ)+(n(2ρ+1)−2)g(∇λ,ξ)

+2µ(nρ−1)|ξ|2 divξ+µnρξ(|ξ|2).

Hence we obtain
(1−nρ)

2
∆|ξ|2 = (1−nρ)|∇ξ|2 +(nρ−1)Ric(ξ,ξ)+nρ∇ξ divξ

+2ρ(1−nρ)g(∇R,ξ)− (n(2ρ+1)−2)g(∇λ,ξ) (3.22)

+2µ(1−nρ)|ξ|2 divξ−µnρξ(|ξ|2).

Thus (3.18) is proved.
Next using the fundamental equation to write

Ric(ξ,ξ) = λ|ξ|2 +ρR|ξ|2 +µ|ξ|4 − 1
2

£ξg(ξ,ξ),

then we get

(1−nρ)

2
∆|ξ|2 = (1−nρ)|∇ξ|2 +(nρ−1)

[
λ|ξ|2 +ρR|ξ|2 +µ|ξ|4

−1
2

£ξg(ξ,ξ)
]
+nρ∇ξ divξ+2ρ(1−nρ)g(∇R,ξ)

− (n(2ρ+1)−2)g(∇λ,ξ)+2µ(1−nρ)|ξ|2 divξ−µnρξ(|ξ|2)

= (1−nρ)|∇ξ|2 + (1−nρ)

2
∇ξ|ξ|2 +λ(nρ−1)|ξ|2 +ρR(nρ−1)|ξ|2

+µ(nρ−1)|ξ|4 +nρ∇ξ divξ+2ρ(1−nρ)g(∇R,ξ)

− (n(2ρ+1)−2)g(∇λ,ξ)+2µ(1−nρ)|ξ|2 divξ−µnρξ(|ξ|2).

Hence we obtain
(1−nρ)

2
(∆−∇ξ)|ξ|2 = (1−nρ)|∇ξ|2 +λ(nρ−1)|ξ|2

+ρR(nρ−1)|ξ|2 +µ(nρ−1)|ξ|4 +nρ∇ξ divξ (3.23)

+2ρ(1−nρ)g(∇R,ξ)− (n(2ρ+1)−2)g(∇λ,ξ)

+2µ(1−nρ)|ξ|2 divξ−µnρξ(|ξ|2),

which completes the proof of the lemma. □

Using the diffusion operator ∆ξ = ∆−∇ξ (see [[4], pp. 143]) and taking ξ = ∇ f in
the previous lemma, namely, ∆ f = ∆−∇∇ f , we get the next corollary with the help
of (3.19).
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Corollary 1. Let (Mn,g,∇ f ,λ,µ) be a gradient almost η-Ricci-Bourguignon soliton.
Then we have
(1−nρ)

2
∆ f |∇ f |2 = (1−nρ)|∇2 f |2 +λ(nρ−1)|∇ f |2

+ρ(nρ−1)R|∇ f |2 +µ(nρ−1)|∇ f |4 +nρ∇∇ f (∆ f )

+2ρ(1−nρ)g(∇R,∇ f )− (n(2ρ+1)−2)g(∇λ,∇ f ) (3.24)

+2µ(1−nρ)∆ f |∇ f |2 −µnρ∇ f (|∇ f |2).

Remark 2. The similar results of (3.18) and (3.19) for η-Ricci-Bourguignon soliton
(Mn,g,ξ,λ,µ) are

(1−nρ)

2
∆|ξ|2 = (1−nρ)|∇ξ|2 +(nρ−1)Ric(ξ,ξ)+nρ∇ξ divξ (3.25)

+2ρ(1−nρ)g(∇R,ξ)+2µ(1−nρ)|ξ|2 divξ−µnρξ(|ξ|2)
and

(1−nρ)

2
(∆−∇ξ)|ξ|2 = (1−nρ)|∇ξ|2 +λ(nρ−1)|ξ|2 +ρR(nρ−1)|ξ|2

+µ(nρ−1)|ξ|4 +nρ∇ξ divξ+2ρ(1−nρ)g(∇R,ξ)

+2µ(1−nρ)|ξ|2 divξ−µnρξ(|ξ|2). (3.26)

Proof. The proofs are the same as Lemma 1 with ∇λ = 0. □

In Theorem 3 of [5], the authors proved that for a compact almost Ricci soliton
(Mn,g,ξ,λ), n ≥ 3 satisfying that

∫
M(Ric(ξ,ξ)+ (n− 2)g(∇λ,ξ))dM ≤ 0, the po-

tential vector field ξ is Killing and the soliton is trivial. Now, we give a similar result
for compact almost η-Ricci-Bourguignon soliton as follows:

Theorem 4. Let (Mn,g,ξ,λ,µ), n ≥ 3, be a compact almost η-Ricci-Bourguignon
soliton. If ρ ̸= 1

n and∫
M

(
Ric(ξ,ξ)+

nρ

nρ−1
∇ξ divξ−2ρg(∇R,ξ)− (n(2ρ+1)−2)

nρ−1
g(∇λ,ξ)

−2µ|ξ|2 divξ− µnρ

nρ−1
ξ(|ξ|2)

)
dM ≤ 0, (3.27)

then ξ is a Killing vector field and Mn is a trivial soliton.

Proof. It sufficient to integrate (3.18) of Lemma 1 with ρ ̸= 1
n . So we get∫

M
|∇ξ|2 =

∫
M

(
Ric(ξ,ξ)+

nρ

nρ−1
∇ξ divξ−2ρg(∇R,ξ) (3.28)

− (n(2ρ+1)−2)
nρ−1

g(∇λ,ξ)−2µ|ξ|2 divξ− µnρ

nρ−1
ξ(|ξ|2)

)
dM ≤ 0.
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As we are assuming that the right-hand side of (3.18) is less than or equal to zero, we
get ∇ξ = 0, therefore we have £ξg = 0, which yields that ξ is a Killing vector field.
Thus, Mn is trivial, which completes the proof of the theorem. □

As a consequence of this theorem, we give the following corollary when ∇λ = 0.

Corollary 2. Let (Mn,g,ξ,λ,µ), n≥ 3, be a compact η-Ricci-Bourguignon soliton.
If ρ ̸= 1

n and∫
M

(
Ric(ξ,ξ)+

nρ

nρ−1
∇ξ divξ−2ρg(∇R,ξ)−2µ|ξ|2 divξ− µnρ

nρ−1
ξ(|ξ|2)

)
dM ≤ 0.

(3.29)
Then ξ is a Killing vector field and Mn is a trivial.

Proof. It is sufficient to take ∇λ = 0. □

Remark 3. Corollary 2 is an analog of Theorem 1.1 in [20] which was for the
case of compact Ricci solitons. We obtain Petersen-Wylie’s result from our result by
taking ρ = 0 and ξ is a conformal vector field.

4. INTEGRAL FORMULAS FOR GRADIENT ALMOST η-RICCI-BOURGUIGNON
SOLITON

In this section, we derive some integral formulas for a compact almost η-Ricci-
Bourguignon soliton (Mn,g,ξ,λ,µ) which are the generalization formula of a natural
extension obtained for an almost Ricci-Bourguignon soliton in [14], as well as a
similar one in [21].

Proposition 1. Let (Mn,g,∇ f ,λ,µ) be a gradient almost η-Ricci-Bourguignon
soliton, then the following equations hold:

(1−nρ)R+∆ f = nλ+µ|∇ f |2, (4.1)

(1−2ρ(n−1))∇R = 2(1−µ)Ric(∇ f )+2(n−1)∇λ (4.2)

+2µ(R− (n−1)(λ+ρR))∇ f ,

(∇Y Ric)(X ,Z)− (∇X Ric)(Y,Z)−g(R (X ,Y )Z,∇ f )

= Y [λ]g(X ,Z)−X [λ]g(Y,Z)+ρ((∇Y R)g(X ,Z)− (∇X R)g(Y,Z)) (4.3)

+µ
(
∇Y (d f ⊗d f )(X ,Y )−∇X(d f ⊗d f )(X ,Y )

)
,

for any vector fields X ,Y,Z on M and R is the Riemannian curvature tensor of M.

∇
(
(1−2ρ(n−1))R+ |∇ f |2 −2(n−1)λ

)
(4.4)

= 2(λ+ρR)∇ f +2µ
(
∇∇ f ∇ f +(|∇ f |2 −∆ f )∇ f

)
.
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Proof. Taking the trace of equation (2.3), we obtain (4.1). For proving (4.2), taking
the divergence of (2.4), we get

divRic+div(∇2 f ) = µ∆ f ∇ f +µ∇∇ f ∇ f +∇(λ+ρR). (4.5)

From equation (4.1), we have ∆ f = −R + nλ + nρR + µ|∇ f |2, remembering that
∇|∇ f |2 = 2∇∇ f ∇ f and ∇∇ f ∇ f = λ∇ f +ρR∇ f +µ|∇ f |2∇ f −Ric(∇ f ) with the help
of equation (3.16), we get

1
2

∇R =−Ric(∇ f )−∇(−R+n(λ+ρR)+µ|∇ f |2)

+µ∆ f ∇ f +µ∇∇ f ∇ f +∇(λ+ρR)

=−Ric(∇ f )+∇R−µ∇∇ f ∇ f +µ∆ f ∇ f − (n−1)∇(λ+ρR).

Hence
1
2

∇R = Ric(∇ f )−µ∆ f ∇ f +µ∇∇ f ∇ f +(n−1)∇(λ+ρR). (4.6)

Using (2.3),
∇∇ f ∇ f = (λ+ρR)∇ f +µ|∇ f |2∇ f −Ric(∇ f ). (4.7)

Combining (4.6) and (4.7), we obtain

(1−2ρ(n−1))∇R = (1−µ)Ric(∇ f )+µ
(
(λ+ρR)+µ|∇ f |2)−∆ f

)
∇ f +(n−1)∇λ

= (1−µ)Ric(∇ f )+µ
(
R− (n−1)(λ+ρR)∇ f

)
+(n−1)∇λ.

which gives the second assertion. To get the equation (4.3), using equation (2.4) and
covariant derivatives of Ric(X ,Z) and Ric(Y,Z) where X ,Y,Z are any vector fields
on M, we get

(∇Y Ric)(X ,Z)− (∇X Ric)(Y,Z) =
(
∇Y ∇X ∇Z f −∇X ∇Y ∇Z f

)
+(∇Y λ)g(X ,Z)− (∇X λ)g(Y,Z)

+ρ
(
(∇Y R)g(X ,Z)− (∇X R)g(Y,Z)

)
+µ
(
∇Y (d f ⊗d f )(X ,Y )−∇X(d f ⊗d f )(X ,Y )

)
= g(R (X ,Y )Z,∇ f )+Y [λ]g(X ,Z)−X [λ]g(Y,Z)

+ρ
(
Y [R]g(X ,Z)−X [R]g(Y,Z)

)
+µ
(
∇Y (d f ⊗d f )(X ,Y )−∇X(d f ⊗d f )(X ,Y )

)
.

Hence (4.3) is proved. For the last equation, using (4.2), we have

1
2
(1−2ρ(n−1))∇R+

1
2

∇|∇ f |2 − (n−1)∇λ

= (1−µ)Ric(∇ f )−Ric(∇ f )+µ(R− (n−1)(λ+ρR))∇ f

+µ|∇ f |2∇ f +(λ+ρR)∇ f .
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Then

∇
(
1−2ρ(n−1)R+ |∇ f |2 −2(n−1)λ

)
−2(λ+ρR)∇ f

= 2µ
(
(|∇ f |2 +R− (n−1)(λ+ρR)∇ f )−Ric(∇ f )

)
= 2µ

(
(|∇ f |2 +R−n(λ+ρR)∇ f )+(λ+ρR))∇ f −Ric(∇ f )

)
= 2µ

(
|∇ f |2 +µ|∇ f |2 −∆ f +(λ+ρR)∇ f )−Ric(∇ f )

)
= 2µ

(
∇∇ f ∇ f +(|∇ f |2 −∆ f )∇ f

)
.

Which completes the proof of the proposition. □

Corollary 3. We have the following equations for the gradient η-Ricci-Bourguignon
solitons (Mn,g,∇ f ,λ,µ).

(1−nρ)R+∆ f = nλ+µ|∇ f |2, (4.8)

(1−2ρ(n−1))∇R = 2(1−µ)Ric(∇ f )+2µ(R− (n−1)(λ+ρR))∇ f ,
(4.9)

(∇Y Ric)(X ,Z)− (∇X Ric)(Y,Z)−g(R (X ,Y )Z,∇ f )

= ρ
(
(∇Y R)g(X ,Z)− (∇X R)g(Y,Z)

)
(4.10)

+µ
(
∇Y (d f ⊗d f )(X ,Y )−∇X(d f ⊗d f )(X ,Y )

)
.

(4.11)

∇(1−2ρ(n−1) R +|∇ f |2 −2λ f
)
= 2ρR∇ f +2µ

(
∇∇ f ∇ f +(|∇ f |2 −∆ f )∇ f

)
.

(4.12)

Proof. The proof is the same as Proposition 1 taking ∇λ = 0. □

Lemma 2. Let (Mn,g,∇ f ,λ,µ) be a gradient almost η-Ricci-Bourguignon soliton.
Then we have(

1−2ρ(n−1)
2

)
∆R =−

∣∣∣∣∇2 f − ∆ f
n

g
∣∣∣∣2 −{1+nµ

n

}
(∆ f )2 − n

2
g(∇ f ,∇λ)

− n
2

ρg(∇ f ,∇R)+
{

1−2µ
2

}
g(∇ f ,∇∆ f ) (4.13)

+µdiv(∇∇ f ∇ f )+(n−1)∆λ+λ∆ f +ρR∆ f .

Proof. First we take the divergence of (4.4) in Proposition 1 to get(
1−2ρ(n−1)

2

)
∆R+∆|∇ f |2 − (n−1)∆λ

= λ∆ f +ρR∆ f +µ
(
g(∇(|∇ f |2 −∆ f ),∇ f )

+(|∇ f |2 −∆ f )∆ f +div(∇∇ f ∇ f )
)
.
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Since
∣∣∣∇2 f − ∆ f

n g
∣∣∣2 = |∇2 f |2 − 1

n(∆ f )2 with the help of Bochner’s formula, we de-
duce from the last relation:(

1−2ρ(n−1)
2

)
∆R =−Ric(∇ f ,∇ f )−

∣∣∣∣∇2 f − ∆ f
n

g
∣∣∣∣2 − 1

n
(∆ f )2 −g(∇∆ f ,∇ f )

+(n−1)∆λ+λ∆ f +ρR∆ f +2µg(∇∇ f ∇ f ,∇ f )

+µ
(
(|∇ f |2 −∆ f )∆ f −g(∇∆ f ,∇ f )+div(∇∇ f ∇ f )

)
.

Thereby, using equation (4.1) to write g(∇∆ f ,∇ f ) = g(∇(n(λ + ρR) + µ|∇ f |2 −
R),∇ f ), then the we have(

1−2ρ(n−1)
2

)
∆R =−Ric(∇ f ,∇ f )−

∣∣∣∣∇2 f − ∆ f
n

g
∣∣∣∣2 − 1+nµ

n
(∆ f )2 +(n−1)∆λ

−g(∇(µ|∇ f |2 −R+(λ+ρR)n),∇ f )+2µg(∇∇ f ∇ f ,∇ f )

+λ∆ f +ρR∆ f +µ
(
|∇ f |2∆ f −g(∇∆ f ,∇ f )

+div(∇∇ f ∇ f )
)

=−(Ric(∇ f ,∇ f )+(n−1)g(∇λ,∇ f ))−
∣∣∣∣∇2 f − ∆ f

n
g
∣∣∣∣2

− 1+nµ
n

(∆ f )2 +(n−1)∆λ+(λ+ρR)∆ f +g(∇R,∇ f )

−nρg(∇R,∇ f )+ρg(∇R,∇ f )+µ
(
|∇ f |2∆ f

−g(∇∆ f ,∇ f )+div(∇∇ f ∇)
)
.

Hence, using (4.2) and putting into the last equation, we deduce that(
1−2ρ(n−1)

2

)
∆R =

1
2

g(∇R,∇ f )−
∣∣∣∣∇2 f − ∆ f

n
g
∣∣∣∣2 − 1+nµ

n
(∆ f )2

+(n−1)∆λ+(λ+ρR)∆ f +
µ
2

g(∇|∇ f |2,∇ f )

+µ
[
−g(∇∆ f ,∇ f )+div(∇∇ f ∇ f )

]
=

1
2

g(∇R,∇ f )−
∣∣∣∣∇2 f − ∆ f

n
g
∣∣∣∣2 − 1+nµ

n
(∆ f )2 +(n−1)∆λ

+(λ+ρR)∆ f +µ
(
g(∇∇ f ∇ f ,∇ f )−g(∇∆ f ,∇ f )

+div∇∇ f ∇ f
)

= g(∇R,∇ f )−
∣∣∣∣∇2 f − ∆ f

n
g
∣∣∣∣2 − 1+nµ

n
(∆ f )2 +(n−1)∆λ

+(λ+ρR)∆ f +
1
2

g(∇ f ,∇∆ f )− n
2

g(∇λ,∇ f )



ON ALMOST η-RICCI-BOURGUIGNON SOLITONS 505

− nρ

2
g(∇R,∇ f )−µg(∇∆ f ,∇ f )+µdiv(∇∇ f ∇ f ).

Since ∇∇ f ∇ f = 1
2 g(∇R,∇ f )+ 1

2 g(∇∆ f ,∇ f )− n
2 g(∇λ,∇ f )− nρ

2 g(∇R,∇ f ), then sub-
stituting this equation into the above formula, we get the expression in the statement,
which completes the proof of the lemma. □

As a consequence of this lemma, we give the following integral formula.

Theorem 5. Let (Mn,g,ξ = ∇ f ,λ,µ) be a compact orientable almost η-Ricci-
Bourguignon soliton. Then we have

(1) Mn is trivial provided
∫

M

(
ρg(∇R,∇ f )+g(∇ f ,∇λ)

)
dM ≥ 0,

(2)
∫

M |∇2 f − ∆ f
n g|2 dµ =−n+2

2n

∫
M

(
g(∇ f ,∇R)+µ∆ f |∇ f |2

)
dM,

(3) If
∫

M

(
g(∇ f ,∇R)+µ∆ f |∇ f |2

)
dM ≥ 0 then Mn is conformally equivalent to

a unit sphere Sn.

Proof. Since Mn is compact orientable, then using Lemma 2 and Stokes’ formula
to infer∫

M
|∇2 f − ∆ f

n
g|2 dM =−

(
1+nµ

n

)∫
M
(∆ f )2 dM−

(
1−2µ

2

)∫
M
(∆ f )2 dM

− n
2

∫
M
(g(∇λ,∇ f )+ρg(∇R,∇ f )dM)

−ρ

∫
M

g(∇ f ,∇R)dM−
∫

M
g(∇λ,∇ f )dM.

Hence, we get ∫
M

(∣∣∣∣∇2 f − ∆ f
n

g
∣∣∣∣2 +(n+2

2n

)
(∆ f )2

)
dM (4.14)

=−
(

n+2
2

)∫
M
(g(∇λ,∇ f )+ρg(∇R,∇ f ))dM.

Then we have ∫
M
(ρg(∇R,∇ f )+g(∇λ,∇ f ))dM ≥ 0,

it implies that if R and λ are constant, we deduce from the first assertion∫
M

(∣∣∣∣∇2 f − ∆ f
n

g
∣∣∣∣2 +(n+2

2n

)
(∆ f )2

)
dM = 0,

which implies that ∇2 f = ∆ f
n g and ∆ f = 0. So, f is constant, then Mn is trivial. Hence

the first statement is proved.
For the second assertion, from (4.1), we can write∫

M
g(∇ f ,∇λ)dM =

1
n

∫
M

g(∇ f ,∇((1−nρ)R+∆ f −µ|∇ f |2))dM.
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Therefore, using equation (4.14), we infer∫
M

(∣∣∣∣∇2 f − ∆ f
n

g
∣∣∣∣2 +(n+2

2n

)
(∆ f )2

)
dM

=−n+2
2n

∫
M

g(∇ f ,∇R)dM+
n+2

2n

∫
M
(∆ f )2 dM

+
µ(n+2)

2

∫
M

g
(
∇ f ,∇|∇ f |2

)
dM.

Therefore, after some calculations and using Stokes’ formula, we deduce∫
M
|∇2 f − ∆ f

n
g|2 dM =−n+2

2n

∫
M

(
g(∇ f ,∇R)+µ∆ f |∇ f |2

)
dM.

Hence the second item is proved.
For the last item, if

∫
M

(
g(∇ f ,∇R)+µ∆ f |∇ f |2

)
dM ≥ 0, then we have∫

M

∣∣∣∣∇2 f − ∆ f
n

g
∣∣∣∣2 dM = 0.

If f is constant, the solution is trivial otherwise ∇2 f = ∆ f
n g. We may invoke a theorem

due to Ishihara and Tashiro [16] to conclude that Mn is conformally equivalent to a
sphere Sn, which completes the proof of the theorem. □

For a conformal vector field ξ on a compact orientable Riemannian manifold Mn

we have
∫

M £ξRdM =
∫

M g(ξ,∇R)dM = 0, see [9] and
∫

M |ξ|2 divξdM = 0 from
Lemma 1 of [6]. From Theorem 5, we give the following corollary.

Corollary 4. Let (Mn,g,ξ = ∇ f ,λ,µ) be a compact orientable almost η-Ricci-
Bourguignon soliton. Then we have

(1) If n ≥ 0,
∫

M g(∇ f ,∇R)dM = 0 and
∫

M ∆ f |∇ f |2 dM = 0, then ∇ f is a con-
formal vector field.

(2) If n = 2 and
∫

M ∆ f |∇ f |2 dM = 0, then f is constant.

Proof. Using the last item of Theorem 5, we deduce that ∇2 f = ∆ f
n g, which allows

us to say ∇ f is conformal. Hence the first statement is proved. Moreover for n = 2,
and supposing

∫
M ∆ f |∇ f |2 dM = 0,we conclude that f is constant. □
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