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Abstract. The paper studies the non-oscillatory properties of two-dimensional systems of non-
linear differential equations

W = g(t)v]aEsgny, v = —p(t)[u|*sgnu,

where the functions g: [0, +oo[— [0,4co[, p: [0, +eo[— R are locally integrable and o > 0. We
are especially interested in the case of [T g(s)ds < +oo.

In the paper, new non-oscillation criteria are established. Among others, they generalize well-
known results for linear systems as well as second order linear and also half-linear differential
equations. The criteria presented complement the results of Hartman-Wintner’s type for the
system in question.
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1. INTRODUCTION

On the half-line R, = [0, +eo[, we consider the two-dimensional system of non-
linear ordinary differential equations

i = g(t)|v|@sgnv,

(1.1)
V= —p(t)|u|*sgnu,

where o0 > 0 and p, g: R4 — R are locally Lebesgue integrable functions.

By a solution to system (1.1) on the interval J C [0, 4] we understand a vec-
tor function (u,v), where functions u,v: J — R are absolutely continuous on every
compact interval contained in J and satisfy equalities (1.1) almost everywhere in J.

It was proved in [9] that all non-extendable solutions to system (1.1) are defined on
the whole interval [0, +oo[. Consequently, speaking about a solution to system (1.1),
we assume, without loss of generality, that it is defined on [0, +oo|.
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Definition 1. A solution (u,v) of system (1.1) is called non-trivial, if
lu(t)| + |v(t)|] # 0 forr>0.

We say that a non-trivial solution (u,v) of system (1.1) is non-oscillatory if at least
one of its components does not have any sequence of zeroes tending to infinity, and
oscillatory otherwise.

In [9, Theorem 1.1], it is shown that a certain analogue of Sturm’s theorem holds
for system (1.1) if the function g is non-negative. Especially if system (1.1) has a non-
oscillatory solution, then any other of its non-trivial solutions is also non-oscillatory.
Therefore, it is natural to assume

g(t)>0 fora.e.t>0 (1.2)

throughout the paper.

On the other hand, if g(#) = 0 on some neighborhood of +eo, then all non-trivial
solutions to system (1.1) are non-oscillatory. Consequently, we also suppose that the
inequality

meas{t >1: g(t) >0} >0 forr>0 (1.3)
holds.

Definition 2. We say that system (1.1) is non-oscillatory if all its non-trivial solu-
tions are non-oscillatory.

The oscillation and non-oscillation theory for ordinary differential equations is
widely studied in the literature. The criteria presented below are close to those estab-
lished in [1-4, 68, 10, 12]. Namely, many of them (see, e.g., the survey given in [1])
are known for the so-called “half-linear” equation

(r(0) )7 'sgnu) + p(1)|ul?'sgnu =0, (1.4)

where g > 1, p,r: [0,+o[— R are continuous and r is positive. We can see that
(1.4) is a particular case of system (1.1). Indeed, if the function u, with the properties
u€ C"and r|u'|7 'sgnu’ € C', is a solution to equation (1.4), then the vector function
(u,r|u'|9 Tsgnu') is a solution to system (1.1) with g(¢) := rﬁ(t) for + > 0 and
o :=g— 1. In the case of f0+°° g(s)ds = oo, some of the above-mentioned results
are generalized in [11].

Throughout the paper, we assume that the function g is integrable on [0, +oo], i..

/+mg(s) ds < +oo. (1.5)
0

In this case, the interesting results dealing with the oscillation of the system (1.1) are

presented in [2]. Below formulated criteria complement these ones in certain sense.
On the other hand, as far as we know, not many non-oscillation criteria are known

under the assumption (1.5). In particular, for the half-linear equation (1.4), one can
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find some non-oscillation criteria, e.g., in [1,5]. But there are some “’sign” restrictions
on the coefficient p.
We introduce the following notations. Let

o0
f) ::/ g(s)ds fort>0.
t
In view of assumptions (1.2), (1.3) and (1.5), we have

lim f(r) =

f—>—+oo
and

f(t)>0 fort>0.
Further, for any A > o, we put

calt:N) ::(x—a)fk—“(t)/ AT M (/ E) )ds fort > 0.

It is known that some analogy of the Hartmann—Wlntner theorem (see [2, Corol-
lary 2.11], where we putv. = 1 — o + A) holds. In particular, if the function
cq(+;A) has no finite limit and liminf,_, . cq(f;A) > —oo, then system (1.1) is oscil-
latory.
In this paper, we provide non-oscillatory criteria for the case where there exists a
finite limit of the function cq(-;A), i.e.,
lim cq(t;Ah) =: cg (M) € R.

f—>oo

Under this assumption, we put for any A €]al, +eo[ and u € [0, 0

o(t;a,h) == = l(x( ) <c:;(7») —/Otp(s)fk(s) ds> fort >0,

H(t;0,u) = f““(t)/otp(s)f“(s) ds fort>0.

Moreover, let us denote
0. (o, A) :zltlging(t;oc,k), H, (o, u) ::l,lging(t;a’“)’ o
0" (o, A) :==limsup Q(r; o, M), H* (o, u) :=limsup H (t; 0L, u). (1.6)

t—>—o0 t—>+o0
2. MAIN RESULTS

This section contains formulations of the main results of the paper. Firstly, we
formulate the non-oscillation criteria for system (1.1) in terms of the lower and upper
limits of the function Q(-,a,A).

For any k € R, let us denote by A(k) and B(k) the smallest and the greatest roots
of the equation

x|« 4 Ax+ (A — o)k = 0. 2.1)
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o
Let us note that, the equation (2.1) has exactly two real roots if k¥ < (Hia) ﬁ.

Moreover, A(k) € } —oo, (HLOL)“ [, i.e. the smallest one is always negative (see Fig-

ure 1(a), where e =2, L =3, k= 1).

Theorem 1. Let A €], 49|,

. 1 o \'*
o(A—0)+A

be fulfilled, where K = =TiEE) (1%()0(. Then, system (1.1) is non-oscillatory.

Before we formulate the following statement, we denote by B (m) the greatest root
of the equation

olx| @ —ox+n =0. (2.3)

Let us note that, the equation (2.3) has exactly two real roots if 1 < (&)Ha

2

0]

moreover, B(M) € } ( Tra

)a,oo [ i.e. the greatest one is always positive (see Fig-
ure 1(b), where o =2, 1 = %).

-05 -05

(2) f(x) = 2|x|7 +3x+ (b) g(x) = 2[x|7 — 20+ £
FIGURE 1.

Theorem 2. Let A €|, +-oo],
—o0 < Qi (0, A) <A(K) + K (2.4)
and

0" (1) < Q.(,1) + B) + B (Q.(.2) + Bn) ) @5)

be fulfilled, where Kk = % (ﬁ)“ and N = (A— ) Q. (0, A). Then, system
(1.1) is non-oscillatory.
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Remark 1. Theorem 2 complements Theorem 1 in certain sense. Indeed, if the
first inequality in (2.2) is not satisfied and Q.(o,A) is finite, then condition (2.4)
holds. In such a case, it is sufficient to verify condition (2.5) and the system (1.1) is
non-oscillatory according Theorem 2 (see Example 1) .

In the following theorems we established the non-oscillation criteria in terms of
the lower and upper limits of the function H(-,a,u). Now, we denote by A(v) and
B(v) the smallest and greatest roots of the equation

ofx| & o+ (a— p)v = 0. (2.6)

. . 1
Let us note that, the equation (2.6) has two real roots if v < ﬁ (HL(X) +u, moreover,

A(v) € } —oo, (HLQ)OC] , i.e. the smallest one is always negative.
Theorem 3. Ler u € (0,0,
o(2a+1) ( o

) <H,(o,u) and H*(o,u) <v—A(V) .7

T+ a)(a—m \T+a
be fulfilled with v = —% (ﬁ)a. Then, system (1.1) is non-oscillatory.

Finally, we formulate the statement which completes the previous one in the same
sense, as it is mentioned in Remark 1 for Theorem 1 and Theorem 2.

Theorem 4. Let u € [0,0],

aa+1) a \*
_OO<H*((X’”)S_(1+OL)(OL—,L:) <1—|—0c) (2.8)
and
H*(o,u) < 8—A(8) (2.9)

~

be fulfilled, where & = <B((0c —,u)H*((x,,u))) e +H, (0, u) and B(E) is the greatest
root of the equation
olx| e +ox+E=0, for £<O0.

Then, system (1.1) is non-oscillatory.
Let us note, that the B(&) € ] — (%)0‘ , 400 { and B(&) > 0 for & < 0.

Remark 2. In [1, Section 3.1], there are functions Q, H and also non-oscillatory
criteria defined for the equation (1.4) with the particular parameters A = o+ 1 and
u = 0. However, in this paper, they are formulated in a more general way, where
A €]a, oo and u € [0,A[. One can see (e.g. Example 2) that it is meaningful, since
we can decide on non-oscillation in more cases of the system in question (1.1).



976 Z. OPLUSTIL

Example 1. Letaa =2, A =3,

and

p(t) = (4?392 + 5@) (sin (In(1+7))+cos(In(1+41¢)) — ?133-1-\/25\/_%>

(1+1)

fort > 0.
One can verify that

and

3= [ ([ roraz) as

(—15v/105 — 69) sin(In(1 +¢)) 4 (— 19+ 154/105) In(z + 1) + 108¢
432(t + 1)

fort > 0. Hence, we get
5(3) = lim ex(1,3) = 5.

Moreover,

0(6:2,3) = (t+1) (i —/0’ (lpfs)>3ds)
(89+15/105) (cos (#))2 — 15V/105—35

- fort >0
216 ort =9,
therefore,
o 15v/105 + 35
Q.(2,3) =liminfQ(1;2,3) = ———— 1 ——
and
0*(2,3) =limsupQ(;2,3) = .
t—>+too 4
On the other hand, for o = 2, A = 3, we have k = 39 and the equation (2.1) is of
the form

3 20
2|x|2 +3x+— =0.
|x|2 + x—|-27
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It is not difficult to verify that

20 20 544/105)2 20 15v/105+ 35
A 4+ = ( ) =T T = 0.(2,3).
27 144 27 216

Consequently, we cannot apply Theorem 1, since the first inequality in (2.2) is not
satisfied. However, one can show that Theorem 2 guarantees non-oscillation of the
system in question. Indeed, for A = 3 and o = 2, we have N = Q.(2,3) and equation
(2.3) is of the form

> V)

15V105+35

3
23— 2
x|? =2 216

0.

One can verify that

E(— 15\/105+35> 65451105

216 72
and A
B(0-(an)+Bm)) = —5.
Hence,
e 18 ~( 15/105+35 -
Q°(2,3)=; <5, =0.(23)+B <—216) +B (Q*(Oc,%)+B(n)) :

Consequently, according to Theorem 2, system (1.1) is non-oscillatory.

Example 2. Let o =2,
1 2cost 7
)= ———, and p(t) = — 1+1)*> forz>0.
8= g @4 P0) < 3 9(1+t)>( i)y fort>

If we put u = 1, then one can calculate that

oo 1
= [ s)ds = fore=

and
t 1 [t /2(l+s)coss 7
(2.1) = (1) | pl)1(s)ds m/o( ! 9) ;
6 i e
_ (1+1¢)sint +6cost — 7t —6 fort > 0.
9(1+1)
Hence,
. 13
H.(2,1) = liminfH (;2,1) = =,
and
1

H*(2,1) =limsupH (t;2,1) = ~5

t—roo
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Foroa=2,u=1, we have v = —% and the equation (2.6) is of the form
3 8
2|x|2 ——==0.
|x|2 +x 7
One can verify that

2
i <_8> [ (57+4v203)7 +1 . 1
27 6 6(57+4/203)5 )
thus,
1 2
_ 8 57 +41/203)5 + 1 1
V—AV)=—=+ 67+ J + ,
27 6 6(57 +4+/203)3
1
~—0019> o = H'(2,1).
Clearly,

200+ 1 ¢ 40 13
_ o2o+1) a _ O B o,
(I+o)(a—p) \14+a 27 9
We see that both conditions in (2.7) are satisfied and, therefore, according to The-
orem 3, system (1.1) is non-oscillatory.

On the other hand, if we put u = 0, then
20+1  a \* 20 19
— — | =——=>-—=H,(2,0),
l1+a <1+oc) 27> 18 2,0)

and now we cannot apply Theorem 3. Consequently, it is meaningful to consider our
criteria with the "weight” f*.

3. PROOFS OF THE MAIN RESULTS
Firstly, we present an auxiliary lemma, which we use to prove the main theorems.

Lemma 1 ([1 1, Lemma 3.1]). Let there exist a locally absolutely continuous func-
tion 6: [a,+oo| — R satisfying the inequality
o (t) < —p(t) —ag(t)|o(t)|' @ fora.et>a, 3.1)
where a > 0. Then, system (1.1) is non-oscillatory.

It is not difficult to verify the next lemma by a direct calculation.

Lemma 2. Let
1t
o

y(x) == afx] o+ Brty,

where o, B > 0 and y € R. Then,
¥ (x) <0 for |—oo,x1[, ' (x) >0 for Jx;,eo], (3.2)
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B o
where x| = — (m) ,and

lim y(x) = oo, lim y(x) = +oo.

X—>—o0 X—r+oo

Proof of Theorem 1. In view of (1.6) and (2.2), there exists ty > 0 such that

1 N
A(K)+K<Q(t;oc,k)<( ) fort > 1.

A—a\l+a
Hence,
o o
A(k) < Q(t;0,A) — K < — (1+oc> fort > 1. (3.3)
One can show that x; = — (&)a is the root of the equation (2.1). Moreover, by

virtue of the hypothesis A > o and Lemma 2 (with f = A and y= k(A — a)), we get

A(K) <x1 <xp, and ofx|® +Ax+A—a)k<0 forx€JA(K),xa[, (3.4)

o
where x| = — (ﬁ) . The latter inequalities, together with (3.3), yield
a|Q(t:0LA) — k|« +MQ(H0LA) —K) + (A—)k <0 fort>1f).  (3.5)
Let us introduce the function ¢ as follows
1
o(t) == o~ (Q(t;a,h) —x)  fora.e.t>1. (3.6)
fo(@)
It is clear that
/ g(t) .
G (t)= W (AMQ(t;0,A) —K) + (A—a)k) — p(t) fort > 1.

The latter equality, together with (3.5), implies

(1) < -5 (—a\Q(z;a,x)—Ky‘TT“)—p(z) fora.e. 1> 0.

= flHe(r)
Hence, in view of (3.6), we get that inequality (3.1) is satisfied with a = #y. Con-
sequently, according to Lemma 1, system (1.1) is non-oscillatory. U

Proof of Theorem 2. By virtue of (1.6), (2.4) and (2.5), there exist€ >0 and z, >0
such that

Q.(o,A) —e < Q(t;0,,A) < Q% (a1, A) +¢ (3.7)
and

O (o, A) +& < Q.(a,A) —e+B(ne) + B (Q*(oc, \) —e+§(ng)> fort >t (3.8)
hold with e = (A — o) (Qx« (0, A) —€).
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An analysis similar to that in the proof of Theorem 1 shows that (3.4) holds, where

o\ r\¢
x| = — (m) and x, = — (m) . Therefore,

A\ «
A(K) < — <1—HX> and a|X1’%+7\‘X1+(7\f—a)K<O
The latter inequality guarantees that
1 }\' 1+a
K< 77— — .
A—a < 1+ a)
Hence, in view of (2.4), we obtain

O.(a,d) <A(K)+Kk < (110:) (

and, consequently,

o — oA+ o2
l14+a)(A—o)

(3.9)

A \*o— oA+ a2
0.@hi-0) < (g ) R

On the other hand, the function z: x — o|x| % — o+, is decreasing

on ] —oo, (&)a [, and increasing on } (ﬁ)a ,00 [ Moreover, by virtue of (3.9), we

((22)) 0

~ o
Hence, B(n¢) > (ﬁ) and, consequently,

_ A\ *
—B(Me) < — (1+0L> . (3.10)
If we put N
Ke = 0. (0, }) — €+ B(Me), (3.11)

then it is not difficult to verify that —B(n¢) is the root of equation (2.1) with ¥ = K.
Moreover, (3.10) and Lemma 2 (with B = A and Y= (A — o)) imply, that —B(1¢) =
A(xe) and

ofx| @ + A+ (A—a)ke <0 forx € |A(ke), B(ke)[. (3.12)
In view of (3.7), (3.8) and (3.11), we get

A(xe) = —B(Me) < O(t;0, 1) — ke < B(Ke) fort > te.

The latter inequalities and (3.12) yield (3.5) with Kk = k¢ and 1y = t;.

Now, let the function ¢ be defined by formula (3.6) with k = K¢ and 7y = . Ana-
logously, as in the proof of Theorem 1, one can verify that inequality (3.1) witha =,
holds and, consequently, according to Lemma 1, system (1.1) is non-oscillatory.

O
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Proof of Theorem 3. In view of (1.6) and (2.7), there exist #y > 0 such that
o200+ 1) o

I+ o) (a—p) <1+oc
According to Lemma 2 (with B = p and y= (ot — u)Vv), one can see that function

o
) <H(t;o,u) <v—A(v) fort>t. (3.13)

y(x) == alx| o ux+ (a—p)v forxeR (3.14)

satisfies relations (3.2) with x; = — ( )a. Moreover, it is not difficult to verify, that

M
o+1
(ﬁ) *is the greatest root of the equation (2.6). Hence, by virtue of (3.2), we have
o o
<0 forxe |A(V),| —— . 3.15
<0 forre [aw). (55 | 615
On the other hand, from (3.13), we obtain
o
_ o _
AlV)<v—H(t;ou) < | —— | =B(v) fort>r1.
) <v-Hisow < (155) =BW) forr=n
The latter inequalities, together with (3.14) and (3.15), yield

1+o

alv—H(t;o,u)| « +u(v—H(t;o,u))+ (e—p)v <0 forr > 1. (3.16)

Now, we put
1
o(r):= 70 (v—H(t;o,u)) fort > 1. (3.17)

One can show that

’ () .

o(t) = 7 (u(v—H(t;0,u)) + (o —u)v) —p(t) fora.e.r>1.
Hence, in view of (3.16), we obtain
/ g(l‘) . lia
o) < Fitag) (—oc|v CH(soup)| ) “plt) forae.t> 1.

Consequently, by virtue of (3.17), we get that (3.1) holds with a = #y and, according
to Lemma 1, system (1.1) is non-oscillatory. O

Proof of Theorem 4. In view of (1.6) and (2.9), there exist € > 0 and 7, > 0 such
that

H,.(o,u)—e<H(t;o,u) < H*(a,u) +€ fort >t (3.18)
and
H*(o,u) +€< 8 —A(8) fort >t (3.19)
hold, where
8 = (Bl(a—p)(H.(up) ~))) " + Ha(ou) —e. (3.20)

From (2.8), we get R
B((o— ) (H. (0, 1) — £)) > .
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Moreover, in view of the latter inequality, one can show that

(Bl m(H o))

is the greatest root of the equation (2.6) with v =9, i.e.,

B(de) = (B((a—p)(H. (o) €)™
Consequently, from (3.18), (3.19) and (3.20), we get
A(8g) < 8 —H(t;0,u) < B(3g). (3.21)

On the other hand, an analysis similar to that in the proof of Theorem 3 shows that
function
yelw) = ale] & + et (o= p0)3e
satisfies relations
y(x) <0 forx € |A(S;),B(8)].
The latter inequality together with (3.21) yield (3.16) with v = &g and 7y = fe. Ana-
logously, as in the proof of Theorem 3, one can verify that function

1
o(t) = . — H(t;0, fort >t
( ) fa(t) ( € ( ‘Ll)) orr -~ €
satisfies inequality (3.1) with a = t¢ and, consequently, according to Lemma 1, system
(1.1) is non-oscillatory. g
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