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Abstract. The solvability conditions for the dual matrix equation AXB = D, a pair of dual matrix
equations AX = B,XC = D and the dual matrix equation AX +Y B = D are established by using
the generalized inverses and the singular value decompositions of some real matrices, and the
expressions of the general solutions to these dual matrix equations are presented. Finally, a
numerical experiment is given to validate the accuracy of our result.
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1. INTRODUCTION

Throughout this paper, Rm×n denotes the set of all m× n real matrices, and the
symbols A⊤,A−,A† and ∥A∥ denote the transpose, the g-inverse, the Moore-Penrose
inverse and the Frobenius norm of a real matrix A, respectively. In represents the
identity matrix of order n. For a matrix A ∈Rm×n, EA and FA stand for the orthogonal
projectors: EA = Im −AA† and FA = In −A†A.

In real and complex matrix spaces, many scholars have considered the following
linear matrix equations:

AXB = D, (1.1)
AX = B, XC = D, (1.2)

and

AX +Y B = D. (1.3)

For Eq. (1.1), Penrose [15] obtained the solvability condition and the general solu-
tion of Eq. (1.1) by using the generalized inverse. Tian and Wang [18] analyzed the
relations between least-squares and least-rank solutions of Eq. (1.1). Yuan and Dai
[22] considered the reflexive solutions of Eq. (1.1) and the associated optimal ap-
proximation problem by applying the generalized singular value decomposition. For
Eq. (1.2), Mitra [11] provided the solvability conditions and the general solution of
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Eq. (1.2) by using the g-inverses of matrices. Dajić and Koliha [7] considered the
common Hermitian and positive solutions to Eq. (1.2) for Hilbert space operators.
For Eq. (1.3), Baksalary and Kala [1] and Chu [2] have been derived its general solu-
tion by using the g-inverse and the singular value decomposition (SVD), respectively.
For inconsistent equations, lp and Chebyshev solutions of Eq. (1.3) were considered
in [24] and [25].

The dual number originally was introduced by Clifford [3], and then was further
developed to represent the dual angle in spatial geometry [17]. For any dual number
a can be writhen as a = a1 + εa2, where a1,a2 ∈ R are the real part and the dual part
of the dual number a, respectively, and ε denotes the dual unit with the operational
rules:ε ̸= 0, ε0 = 0ε = 0, ε1 = 1ε = ε, ε2 = 0. A matrix whose elements are dual
numbers is called a dual matrix, that is, for an m×n dual matrix A can be written as
A = A1 + εA2, where the matrices A1 and A2 ∈ Rm×n. Today, dual matrices are used
in a various areas of engineering like the kinematic analysis and synthesis of spatial
mechanisms [4, 16] and the robotics [8]. The growing applicability of dual matrices
in science and engineering has sparked a renewal of interest in the linear algebra and
numerical algorithms [12, 20].

The solution to some linear dual equations is also a task often required in the
kinematic analysis of many spatial mechanisms [13, 14]. For example, Li et al.[9]
used dual-quaternions to solve homogeneous transformation equation AX = ZB for
the robot-to-world and hand-eye calibration problem. Wang et al.[21] converted
the multi-coordinate calibration problem of a dual-robot system into solving the
AXB = YCZ problem. Condurache and Burlacu [5] provided a new approach for
solving AX = XB sensor calibration problem by applying orthogonal dual tensor
methods. Udwadia [19] explored the solution of the linear dual equation Ax = β

which is commonly encountered in areas of kinematics and robotics, where A is a
p-by-q dual matrix and β is a p-by-1 dual vector.

We observe that the dual matrix equations of (1.1), (1.2) and (1.3) are seldom con-
sidered in the literature. In this paper, we will discuss the solvability conditions and
general solutions of these dual matrix equations, which can be stated as the following
problems:

Problem 1. Given dual matrices A = A1 + εA2,B = B1 + εB2 and D = D1 + εD2,
where Ai ∈Rm×n,Bi ∈Rp×q and Di ∈Rm×q. Find a dual matrix X = X1+εX2, where
Xi ∈ Rn×p (i = 1,2) such that Eq. (1.1) is satisfied.

Problem 2. Given dual matrices A = A1 + εA2,B = B1 + εB2,C = C1 + εC2 and
D = D1 + εD2, where Ai ∈ Rm×n,Bi ∈ Rm×p,Ci ∈ Rp×q and Di ∈ Rn×q. Find a dual
matrix X = X1 + εX2, where Xi ∈ Rn×p (i = 1,2) such that Eq. (1.2) is satisfied.

Problem 3. Given dual matrices A = A1 + εA2,B = B1 + εB2 and D = D1 + εD2,
where Ai ∈ Rm×n,Bi ∈ Rp×q and Di ∈ Rm×q. Find dual matrices X = X1 + εX2 and
Y =Y1+εY2, where Xi ∈Rn×q and Yi ∈Rm×p (i= 1,2) such that Eq. (1.3) is satisfied.
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In the following sections, each dual matrix equation will firstly be decomposed
into two real matrix equations. Then, by making use of the generalized inverses and
the SVDs of matrices, the solvability conditions and explicit solutions of Problems 1,
2 and 3 are derived. A numerical example is given to verify its correctness.

2. THE SOLUTION OF PROBLEM 1

To begin with, we introduce some lemmas.

Lemma 1 ([23, page 907]). Suppose that A ∈ Rm×n,B ∈ Rp×q and D ∈ Rm×q.
Then Eq. (1.1) has a solution X ∈ Rn×p if and only if AA†DB†B = D. In this case,
the general solution is X = A†DB† +FAV1 +V2EB, where V1 and V2 are arbitrary
matrices.

Lemma 2 ([6, page 30]). Let A ∈ Rm×p,B ∈ Rm×q and C = (Im −AA−)B. Then
the g-inverse of the matrix [A,B] is

[A,B]− =

[
A−−A−BC−(Im −AA−)

C−(Im −AA−)

]
.

Lemma 3 ([1, page 145]). Given A ∈ Rm×n, B ∈ Rp×q, C ∈ Rm×r, D ∈ Rs×q and
L ∈ Rm×q. Then the matrix equation AXB+CY D = L is consistent if and only if

EGEAL = 0, EALFD = 0, ECLFB = 0, LFBFH = 0,

where G = EAC and H = DFB. In this case, the general solution is

X = A−(L−CY D)B−+Z −A−AZBB−,

Y = G−EALD−+(FGC−+FCG−EA)LFBH−+W −C−CFGWHH−−G−GWDD−,

where W and Z are arbitrary matrices.

Theorem 1. Let dual matrices A = A1 + εA2,B = B1 + εB2 and D = D1 + εD2,
where Ai ∈ Rm×n,Bi ∈ Rp×q and Di ∈ Rm×q (i = 1,2), and let H = EA1A2FA1 ,K =
EB1B2FB1 . Then Eq. (1.1) is solvable if and only if

A1A†
1D1B†

1B1 = D1, (D2 −A1A†
1D1B†

1B2)FB1FK = 0, (2.1)

EA1D2FB1 = 0, EHEA1(D2 −A2A†
1D1B†

1B1) = 0. (2.2)

In this case, the solution set S1 of Problem 1 can be expressed as

S1 =
{

X = X1 + εX2
∣∣X1,X2 ∈ Rn×p} ,

where

X1 =A†
1D1B†

1 +H†(D2 −A2A†
1D1)B

†
1 +A†

1(D2 −D1B†
1B2)K†

+FA1W22 −H†HW22B1B†
1 +W1EB1 −A†

1A1W1KK†, (2.3)

X2 =A†
1(Im −A2H†)(D2 −A2A†

1D1)B
†
1 −A†

1D1B†
1B2B†

1
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−A†
1(D2 −D1B†

1B2)K†B2B†
1 −A†

1A1W21B1B†
1 +W21

−A†
1A1W1EKEB1B2B†

1 −A†
1A2FA1FHW22B1B†

1, (2.4)

and W1,W21,W22 are arbitrary matrices.

Proof. Clearly, Eq. (1.1) can be equivalently written as

A1X1B1 = D1, (2.5)
A2X1B1 +A1X1B2 +A1X2B1 = D2. (2.6)

By Lemma 1, Eq. (2.5) is solvable if and only if the first condition of (2.1) is satisfied,
and the general solution is

X1 = A†
1D1B†

1 +FA1V1 +V2EB1 , (2.7)

where V1 and V2 ∈Rn×p are arbitrary matrices. Inserting (2.7) into Eq. (2.6), we have

[A1,A2FA1 ]

[
X2
V1

]
B1 +A1V2EB1B2 = D2 −A2A†

1D1B†
1B1 −A1A†

1D1B†
1B2. (2.8)

By Lemma 2, we know that
[

A†
1 −A†

1A2FA1H†EA1

H†EA1

]
=

[
A†

1 −A†
1A2H†

H†

]
is one of

the g-inverse of [A1,A2FA1 ]. Thus

E[A1,A2FA1 ]
= Im − [A1,A2FA1 ][A1,A2FA1 ]

− = EHEA1 .

By Lemma 3, Eq. (2.8) is solvable if and only if the second condition of (2.1) and
conditions (2.2) are satisfied. In which case, the general solution is

V2 =A†
1(D2 −D1B†

1B2)K† +W1 −A†
1A1W1KK†, (2.9)[

X2
V1

]
=[A1,A2FA1 ]

−(D2 −A2A†
1D1 −A†

1A1D1B†
1B2 −A1V2EB1B2)B

†
1

+

[
W21
W22

]
− [A1,A2FA1 ]

−[A1,A2FA1 ]

[
W21
W22

]
B1B†

1, (2.10)

where W1,W21 and W22 ∈ Rn×p are arbitrary matrices. From (2.9) and (2.10), we can
get the relation of (2.4) and

V1 = H†(D2 −A2A†
1D1)B

†
1 +W22 −H†HW22B1B†

1. (2.11)

Substituting (2.9) and (2.11) into (2.7), we can get (2.3). □

Clearly, the dual matrix equation AXA = A is a special case of the dual matrix
equation (1.1). According to Theorem 1, we can get the following result about {1}-
dual generalized inverse of the dual matrix A, which was discussed by Udwadia in
[19].
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Corollary 1. Given the dual matrix A = A1+εA2, where A1,A2 ∈Rm×n. Then the
dual matrix equation AXA = A is solvable if and only if H = EA1A2FA1 = 0. In this
case, the general solution is X = X1 + εX2, where

X1 = A†
1 +W1EA1 +FA1W22,

X2 =−A†
1A2A†

1 −A†
1A1W1EA1A2A†

1 +W21 −A†
1A1W21A1A†

1 −A†
1A2FA1W22A1A†

1,

and W1,W21,W22 are arbitrary matrices.

3. THE SOLUTION OF PROBLEM 2

Before solving Problem 2, we need the following Lemma.

Lemma 4 ([10, page 215]). Suppose that A ∈ Rm×n,B ∈ Rm×p,C ∈ Rp×q and
D ∈ Rn×q. Then Eq. (1.2) has a solution X ∈ Rn×p if and only if EAB = 0,DFC = 0
and AD = BC. In which case, the general solution is X = A†B+FADC† +FAWEC,
where W ∈ Rn×p is an arbitrary matrix.

Theorem 2. Assume that dual matrices A = A1+εA2,B = B1+εB2,C =C1+εC2
and D = D1+εD2, where Ai ∈Rm×n,Bi ∈Rm×p,Ci ∈Rp×q and Di ∈Rn×q (i = 1,2).
Let the SVDs of the matrices A1 and C1 be

A1 = P
[

Ω 0
0 0

]
Q⊤, C1 =U

[
Σ 0
0 0

]
V⊤, (3.1)

where Ω = diag(ω1, . . . ,ωr), Σ = diag(σ1, . . . ,σs), r = rank(A1), s = rank(C1), and
P= [P1,P2]∈Rm×m, Q= [Q1,Q2]∈Rn×n, U = [U1,U2]∈Rp×p, V = [V1,V2]∈Rq×q

are orthogonal matrices with P2 ∈Rm×(m−r), Q2 ∈Rn×(n−r), U2 ∈Rp×(p−s) and V2 ∈
Rq×(q−s). If write

G1 = B2 −A2A†
1B1 −A2FA1D1C†

1 , G2 = D2 −A†
1B1C2 −FA1D1C†

1C2,

M1 =U⊤
2 C2V2, N1 = P⊤

2 A2Q2, H1 = Q2FN1 , H2 = EM1U
⊤
2 ,

S = Q2N†
1 P⊤

2 (B2 −A2A†
1B1)EC1 +Q2FN1Q⊤

2 G2V2M†
1U⊤

2 .

Then Eq. (1.2) is solvable if and only if

EA1B1 = 0, D1FC1 = 0, A1D1 = B1C1, (3.2)

A1G2 = G1C1, A†
1A1G2FC1 = 0, EA1G1C1C†

1 = 0, (3.3)

EN1P⊤
2 G1U2 = 0, Q⊤

2 G2V2FM1 = 0, N1Q⊤
2 G2V2 = P⊤

2 G1U2M1. (3.4)

The solution set S2 of Problem 2 can be expressed as

S2 =
{

X = X1 + εX2
∣∣X1,X2 ∈ Rn×p} ,

where

X1 =A†
1B1 +FA1D1C†

1 +S+H1J1H2, (3.5)
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X2 =A†
1(G1 −A2S)+FA1G2C†

1 −SC2C†
1 −A†

1A2H1J1H2

−H1J1H2C2C†
1 +FA1R1EC1 , (3.6)

and J1,R1 are arbitrary matrices.

Proof. Eq. (1.2) can be equivalently written as

A1X1 = B1, X1C1 = D1, (3.7)
A2X1 +A1X2 = B2, X1C2 +X2C1 = D2. (3.8)

By using Lemma 4, we know Eq. (3.7) is solvable if and only if the conditions (3.2)
are satisfied, and the general solution is

X1 = A†
1B1 +FA1D1C†

1 +FA1W1EC1 , (3.9)

where W1 ∈ Rn×p is an arbitrary matrix. Substituting (3.9) into Eq. (3.8), we can get

A1X2 = G1 −A2FA1W1EC1 , X2C1 = G2 −FA1W1EC1C2. (3.10)

Using Lemma 4 again, Eq. (3.10) with respect to X2 is solvable if and only if the first
condition of (3.3) is satisfied and

FA1W1EC1C2FC1 = G2FC1 , (3.11)

EA1A2FA1W1EC1 = EA1G1. (3.12)

In this case, the general solution is

X2 = A†
1(G1 −A2FA1W1EC1)+FA1(G2 −FA1W1EC1C2)C

†
1 +FA1R1EC1 , (3.13)

where R1 ∈ Rn×p is an arbitrary matrix. Inserting (3.1) to Eq. (3.11) and Eq. (3.12),
we can obtain

Q
[

0 0
0 In−r

]
Q⊤W1U

[
0 0
0 Ip−s

]
U⊤C2V

[
0 0
0 Iq−s

]
V⊤

= G2V
[

0 0
0 Iq−s

]
V⊤,

(3.14)

P
[

0 0
0 Im−r

]
P⊤A2Q

[
0 0
0 In−r

]
Q⊤W1U

[
0 0
0 Ip−s

]
U⊤

= P
[

0 0
0 Im−r

]
P⊤G1.

(3.15)

If let

Q⊤W1U =

[
W11 W12
W13 W14

]
, U⊤C2V =

[
C21 C22
C23 C24

]
, Q⊤G2V =

[
G21 G22
G23 G24

]
,

P⊤A2Q =

[
A21 A22
A23 A24

]
, P⊤G1U =

[
G11 G12
G13 G14

]
.
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Then Eq. (3.14) and Eq. (3.15) can be equivalently written as

G22 = 0, G13 = 0, (3.16)

W14M1 = Q⊤G2V2, N1W14 = P⊤
2 G1U2. (3.17)

We note that

G22 = 0 ⇔ Q⊤
1 G2V2 = 0 ⇔ Q1Q⊤

1 G2V2V⊤
2 = 0 ⇔ A†

1A1G2FC1 = 0,

which is the second condition of (3.3). Similarly, the condition G13 = 0 is equivalent
to the third condition of (3.3). Using Lemma 4, Eq. (3.17) with respect to W14 is
solvable if and only if conditions (3.4) hold, and the general solution is

W14 = N†
1 p⊤2 G1U2 +FN1Q⊤

2 G2V2M†
1 +FN1J1EM1 ,

where J1 ∈ R(n−r)×(p−s) is an arbitrary matrix. Thus, we have

FA1W1EC1 = Q2W14U⊤
2 = S+H1J1H2, (3.18)

Substituting (3.18) into (3.9) and (3.13), we can obtain (3.5) and (3.6). □

4. THE SOLUTION OF PROBLEM 3

Theorem 3. Assume that dual matrices A = A1 + εA2,B = B1 + εB2 and D =
D1 + εD2, where Ai ∈ Rm×n,Bi ∈ Rp×q and Di ∈ Rm×q(i = 1,2). Let the SVDs of the
matrices A1 and B1 be

A1 = P
[

Ω 0
0 0

]
Q⊤, B1 = M

[
Λ 0
0 0

]
N⊤, (4.1)

where Ω = diag(ω1, . . . ,ωr), Λ = diag(λ1, . . . ,λt), r = rank(A1), t = rank(B1), and
P = [P1,P2] ∈ Rm×m, Q = [Q1,Q2] ∈ Rn×n, M = [M1,M2] ∈ Rp×p, N = [N1,N2] ∈
Rq×q are orthogonal matrices with P2 ∈ Rm×(m−r), Q2 ∈ Rn×(n−r), M2 ∈ Rp×(p−t)

and N2 ∈ Rq×(q−t). If write

J = D2 −A2A†
1D1 −EA1D1B†

1B2, K1 = P⊤
2 A2Q2, K2 = M⊤

2 B2N2. (4.2)

Then Eq. (1.3) is solvable if and only if

EA1D1FB1 = 0, EK1P⊤
2 JN2FK2 = 0. (4.3)

The solution set S3 of Problem 3 can be expressed as

S3 = {X = X1 + εX2,Y = Y1 + εY2|X1,X2 ∈ Rn×q,Y1,Y2 ∈ Rm×p},
where

X1 =A†
1D1 +Q2K†

1 P⊤
2 JFB1 −A†

1P1V11M⊤
1 B1 +Q2V23N⊤

1

+Q2(FK1W4 −K†
1W3K2)N⊤

2 , (4.4)

Y1 =EA1D1B†
1 +P2EK1P⊤

2 JN2K†
2 M⊤

2 +P1(V11M⊤
1 +V12M⊤

2 )

+P2(W3 −EK1W3K2K†
2 )M

⊤
2 , (4.5)
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X2 =A†
1J−A†

1A2Q2(K
†
1 P⊤

2 JN2 −K†
1W3K2 +FK1W4)N⊤

2

−A†
1P1(V11M⊤

1 +V12M⊤
2 )B2 −A†

1R1B1 +FA1R2

+A†
1A2(A

†
1P1V11M⊤

1 B1 −Q2V23N⊤
1 ), (4.6)

Y2 =EA1JB†
1 +EA1A2(A

†
1P1V11M⊤

1 B1 −Q2V23N⊤
1 )B†

1

−P2EK1P⊤
2 JN2K†

2 M⊤
2 B2B†

1 −P2(W3 −EK1W3K2K†
2 )M

⊤
2 B2B†

1

+R1 −EA1R1B1B†
1, (4.7)

and V11, V12, V23, W3, W4, R1, R2 are arbitrary matrices.

Proof. Obviously, Eq. (1.3) can be equivalently written as

A1X1 +Y1B1 = D1, (4.8)
A2X1 +A1X2 +Y2B1 +Y1B2 = D2. (4.9)

From Lemma 3, Eq. (4.8) is solvable if and only if the first condition of (4.3) is
satisfied, and the general solution is

Y1 = EA1D1B†
1 +V1 −EA1V1B1B†

1, (4.10)

X1 = A†
1D1 −A†

1V1B1 +FA1V2, (4.11)

where V1 and V2 are arbitrary matrices. Plugging (4.10) and (4.11) into Eq. (4.9), we
have

A1X2 +Y2B1 = J−A2FA1V2 +A2A†
1V1B1 −V1B2 +EA1V1B1B†

1B2. (4.12)

Using Lemma 3 again, Eq. (4.12) with respects to X2 and Y2 is solvable if and only if

EA1A2FA1V2FB1 +EA1V1EB1B2FB1 = EA1JFB1 . (4.13)

In this case, the general solution is

Y2 =EA1JB†
1 +EA1A2A†

1V1B1B†
1 −EA1V1EB1B2B†

1

−EA1A2FA1V2B†
1 +R1 −EA1R1B1B†

1, (4.14)

X2 =A†
1(J−A2FA1V2 +A2A†

1V1B1 −V1B2 −Y2B1)+FA1R2, (4.15)

where R1 and R2 are arbitrary matrices. Inserting (4.1) to Eq. (4.13), we can get

P
[

0 0
0 Im−r

]
P⊤A2Q

[
0 0
0 In−r

]
Q⊤V2N

[
0 0
0 Iq−t

]
N⊤

+P
[

0 0
0 Im−r

]
P⊤V1M

[
0 0
0 Ip−t

]
M⊤B2N

[
0 0
0 Iq−t

]
N⊤

= P
[

0 0
0 Im−r

]
P⊤JN

[
0 0
0 Iq−t

]
N⊤.

(4.16)
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If let

P⊤A2Q =

[
A21 A22
A23 A24

]
, Q⊤V2N =

[
V21 V22
V23 V24

]
, P⊤V1M =

[
V11 V12
V13 V14

]
,

M⊤B2N =

[
B21 B22
B23 B24

]
, P⊤JN =

[
J1 J2
J3 J4

]
.

Then Eq. (4.16) can be equivalently written as

K1V24 +V14K2 = P⊤
2 JN2. (4.17)

Using Lemma 3, Eq. (4.17) is solvable if and only if the second condition of (4.3)
holds, and the general solution is

V14 = EK1P⊤
2 JN2K†

2 +W3 −EK1W3K2K†
2 , (4.18)

V24 = K†
1 P⊤

2 JN2 −K†
1W3K2 +FK1W4, (4.19)

where W3 and W4 are arbitrary matrices. Thus,

V1 = P1V11M⊤
1 +P2V13M⊤

1 +P1V12M⊤
2 +P2V14M⊤

2 , (4.20)

V2 = Q1V21N⊤
1 +Q2V23N⊤

1 +Q1V22N⊤
2 +Q2V24N⊤

2 , (4.21)

where V11, V12, V13, V21, V22 and V23 are arbitrary matrices. Substituting (4.18)–
(4.21) into (4.10),(4.11),(4.14),(4.15), and noticing

EA1P1V11M⊤
1 = 0, P1V11M⊤

1 EB1 = 0, A†
1P2V13M⊤

1 = 0, P2V13M⊤
1 EB1 = 0,

EA1P1V12M⊤
2 = 0, P1V12M⊤

2 B1 = 0, A†
1P2V14M⊤

2 = 0, P2V14M⊤
2 B1 = 0,

FA1Q1V21N⊤
1 = 0, Q1V21N⊤

1 FB1 = 0, A1Q2V23N⊤
1 = 0, Q2V23N⊤

1 FB1 = 0,

FA1Q1V22N⊤
2 = 0, Q1V22N⊤

2 B†
1 = 0, A1Q2V24N⊤

2 = 0, Q2V24N⊤
2 B†

1 = 0,

we can obtain (4.4)–(4.7). □

Based on Theorem 3, we can formulate the following algorithm to solve Prob-
lem 3.

Algorithm 1.
(1) Input matrices Ai, Bi and Di (i = 1,2).
(2) Compute the SVDs of the matrices A1 and B1 by (4.1).
(3) Calculate J, K1 and K2 by (4.2).
(4) If the conditions (4.3) are satisfied, go to (5); otherwise, the Eq. (1.3) has no

solution, and stop.
(5) Randomly choose the matrices V11, V12, V23, W3, W4, R1 and R2.
(6) Compute dual matrix X = X1 + εX2 by (4.4)–(4.7).
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Example 1. Let m= 7, n= 6, p= 5, q= 8 and the matrices Ai, Bi and Di (i= 1,2)
be given by

A1 =



0.9295 0.8406 0.3948 0.8918 1.1059 0.6344
1.6982 1.7141 0.7129 1.7326 1.6930 1.3104
1.0853 1.1207 0.5291 0.9446 0.9248 0.7579
1.3420 1.2970 0.7564 0.8606 1.1432 0.8302
1.1715 1.2305 0.4552 1.3524 1.1679 0.7921
0.7213 0.8033 0.3125 0.7792 0.5855 0.4736
1.0188 1.1001 0.3871 1.2182 0.9771 0.6932


,

A2 =



0.4243 0.7691 0.9493 0.8620 0.4070 0.1117
0.2703 0.3968 0.3276 0.9899 0.7487 0.1363
0.1971 0.8085 0.6713 0.5144 0.8256 0.6787
0.8217 0.7551 0.4386 0.8843 0.7900 0.4952
0.4299 0.3774 0.8335 0.5880 0.3185 0.1897
0.8878 0.2160 0.7689 0.1548 0.5341 0.4950
0.3912 0.7904 0.1673 0.1999 0.0900 0.1476


,

B1 =


0.6079 1.1159 0.5956 0.6270 1.2325 1.0054 0.4038 0.9286
1.1726 1.7527 1.2573 1.0184 1.7030 1.8189 1.2731 1.1029
1.1426 1.8468 1.1734 1.0666 1.8938 1.8022 1.0471 1.3055
1.2331 1.8517 1.3963 1.0324 1.8061 1.9805 1.4456 1.2211
0.7972 1.0332 0.6332 0.7645 0.8880 0.9636 0.6552 0.3169

 ,

B2 =


0.8449 0.6147 0.1231 0.6352 0.5358 0.8739 0.4170 0.1420
0.2094 0.3624 0.2055 0.2819 0.4452 0.2703 0.2060 0.1665
0.5523 0.0495 0.1465 0.5386 0.1239 0.2085 0.9479 0.6210
0.6299 0.4896 0.1891 0.6952 0.4904 0.5650 0.0821 0.5737
0.0320 0.1925 0.0427 0.4991 0.8530 0.6403 0.1057 0.0521

 ,

D1 =



6.1406 8.0527 7.0589 5.8597 9.0681 8.7133 6.2116 7.1038
5.9687 6.8809 7.6271 6.0367 8.8409 8.1612 6.6011 7.8182
5.1132 6.4170 5.9975 5.0679 7.5120 7.2419 5.5252 6.0488
3.5206 3.7180 4.3838 3.6134 5.0063 4.7191 3.9893 4.7616
5.1204 6.1849 6.2281 5.2350 7.5842 7.1172 5.4687 6.3310
3.2391 4.1829 3.8441 3.4011 5.1168 4.6853 3.3821 4.2400
3.3819 3.8221 4.3239 3.6439 5.1230 4.6124 3.6780 4.5859


,
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D2 =



8.0148 8.6320 7.9558 8.7138 10.4261 10.2622 7.6799 8.7502
8.0950 8.6298 9.7167 8.8261 9.6116 9.5072 7.0522 8.1786
6.9905 7.4758 7.4314 7.6470 9.1041 8.3395 5.7783 6.9511
7.2252 8.3537 9.3238 7.8794 9.5693 9.1666 7.2035 7.9500
6.2462 6.5371 6.6738 6.9087 7.8271 7.9660 5.7225 6.5788
6.5421 7.5126 6.5417 6.4456 8.0466 8.4030 6.0659 6.3854
6.2975 7.3790 6.7705 6.7915 8.1127 8.4531 5.7726 5.9501


.

It is easy to verify that the solvability conditions (4.3) are satisfied:

∥EA1D1FB1∥= 2.1298e−15, ∥EK1P⊤
2 JN2FK2∥= 1.9240e−15.

According to Algorithm 1, and taking the matrices V11, V12, V23, W3, W4, R1 and
R2 as zero matrices, we can obtain a pair of solution X = X1 + εX2 and Y = Y1 + εY2
of Problem 3 as follows:

X1 =


0.8679 1.5792 1.0708 1.1229 1.3338 1.4621 1.0616 1.2846

−1.1069 −2.0598 −1.2459 −0.5771 −1.3804 −1.5612 −1.0286 −0.8204
0.4778 0.1432 −0.1177 0.4213 0.3441 0.4644 0.4361 0.5040
1.3293 1.9433 1.5302 1.7165 2.4117 1.9648 1.1896 1.7743
6.3263 8.7531 6.6704 5.4077 8.9556 8.9486 5.6859 6.2824

−4.8304 −7.3331 −4.0270 −5.1423 −7.4170 −7.3118 −3.6731 −4.9208

,

X2 =


3.9555 5.5750 4.1899 3.9725 6.0625 5.9144 3.9358 3.9953
5.4489 8.3834 5.1434 5.5083 8.5723 8.3644 4.1819 4.6228
3.6170 5.4246 3.9892 3.6878 5.9108 5.5483 3.6692 3.7562
6.1274 8.2455 4.9003 5.4792 8.5528 9.4694 5.3390 5.3433
2.9899 2.4317 3.4133 2.4154 3.5625 4.2695 5.2274 4.4004

−23.5531 −33.3170 −21.8236 −21.3747 −36.1257 −37.4695 −24.4449 −23.8245

 ,

Y1 =



0.2731 0.1583 0.2593 0.1392 0.1734
−0.0619 −0.1359 −0.1246 −0.1256 −0.1735

0.1409 0.3755 0.3286 0.3476 0.4810
−0.1599 −0.1836 −0.2151 −0.1660 −0.2172
−0.2442 0.0414 −0.0900 0.0411 0.0510

0.4746 0.0933 0.3429 0.0674 0.0352
−0.1406 −0.1897 −0.2349 −0.1644 −0.1789


,

Y2 =



0.5453 −0.0005 0.4083 −0.2108 0.3890
−0.4241 0.0642 −0.2844 0.2672 −0.3632

1.1377 −0.2030 0.7443 −0.7519 0.9533
−0.5297 0.0924 −0.3426 0.3190 −0.3464
−0.3304 −0.3287 −0.4576 −0.1886 −0.6673

0.1814 −0.0026 0.1125 0.0463 −0.2845
−0.0533 0.3677 0.2065 0.3118 0.6601


.

The absolute errors are estimated by

∥A1X1 +Y1B1 −D1∥= 4.0468e−14,
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∥A2X1 +A1X2 +Y2B1 +Y1B2 −D2∥= 5.6005e−14,

which implies that X and Y is a pair of solution of Problem 3.
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