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Abstract. In contrast to most other periodically forced chaotic systems with infinitely many isol-
ated coexisting strange attractors, little seems to be known about the ones that possess con-
joined Lorenz-like attractors with potential existence of infinitely many pairs of wings/scrolls.
To achieve this target, this note proposes a new periodically forced extended Lorenz-like system,
which generates infinitely many singularly degenerate heteroclinic cycles or heteroclinic orbits
to any two equilibria of a family of non-hyperbolic lines, the collapses of which create not only
the desirable conjoined Lorenz-like attractors, but also infinitely many isolated coexisting ones.
What is more, the state variable x of that conjoined Lorenz-like attractor presents stochastic be-
haviors, confirming the links between long period and chaos. This also generalizes the classical
concept of boundedness of chaos, i.e., the system orbits beginning from one sub-two-scroll of
that conjoined Lorenz-like attractor might tend to the ones at infinity. Apart from those, the
existence of an invariant surface and a family of infinitely many pairs of symmetrical hetero-
clinic orbits are proved by utilizing the Lyapunov function, the definitions of both α-limit set and
ω-limit set.
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1. INTRODUCTION

Since the introduction of Lorenz system, scholars made many attempts to shed
some light on the forming mechanism of various strange attractors, including self-
excited and hidden ones, etc. Combining contraction map and boundary problem [8],
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Shilnikov et al. formulated an effective method to determine the existence of homo-
clinic and heteroclinic orbits and further classified chaos occurring in 3D quadratic
autonomous differential systems into the following four cases:

(1) chaos of the Shilnikov homoclinic-orbit type;
(2) chaos of the Shilnikov heteroclinic-orbit type;
(3) chaos of the hybrid type with both Shilnikov homoclinic and heteroclinic

orbits;
(4) chaos of other types.

After the appearance of powerful computational tools, the computer-assisted proof
for the Lorenz attractor became a reality [9, 12, 13]. Kokubu and Roussarie firstly
found that the broken of singularly degenerate heteroclinic cycles (i.e., each of which
consists of invariant sets formed by a non-hyperbolic (i.e., at least one of eigenval-
ues is null) line of equilibria together with heteroclinic orbits connecting two of the
equilibria) created strange attractors [3]. Liao put forward two sufficient conditions
to guarantee a continuous system to exhibit chaotic motions, i.e., the existence of at
least one positive Lyapunov exponent and one ultimate bound set [7]. Specifically,
the first one repels the trajectories of studied systems from inside to outside, while the
second one attracts the trajectories from outside to inside. Kuznetsov et al. searched
a new hidden Lorenz-like attractor by applying homotopy and numerical continu-
ation to synthesise a new transition scenario among the well-known Glukhovsky-
Dolghansky, the Lorenz system and the Rabinovich system, and analytical/numerical
methods based on the continuation and perpetual points [5]. Further, Leonov and
Kuznetsov generalized the second part of the celebrated Hilbert’s 16th problem [2]:
the number and mutual disposition of attractors and repellers in the chaotic multidi-
mensional dynamical systems, and, in particular, their dependence on the degree of
polynomials in the model [4]. Zhang and Chen then also formulated a chaotic analog
when searching for infinitely many chaotic attractors in lower-dimensional autonom-
ous systems, and with an extension to the fractional-order setting [19]. Meanwhile,
they also found some new phenomena that generalized the classical concept of sens-
itive dependence on the initial conditions, i.e., the system orbits beginning from two
very close initial points might either converge and then stay on one attractor or di-
verge to two different attractors. Along the same line, by introducing sine functions,
Yang and Yang proposed a new 3D autonomous system with infinitely many co-
existing chaotic attractors and infinitely many coexisting periodic attractors in the
following three cases:

(i) no equilibria,
(ii) only infinitely many nonhyperbolic double-zero equilibria,

(iii) both infinitely many hyperbolic saddles and nonhyperbolic pure-imaginary
equilibria [17].

Based on the guess that the decrease of powers of some variable states may widen the
ranges of some parameters for which hidden attractors exist, Wang et al. numerically
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found multitudinous potential hidden attractors in a sub-quadratic Lorenz-like system
[15].

Remarkably, all of aforementioned attractors are isolated ones. To this end, by
carrying out numerical simulation on a kind of complex Lorenz-type systems, Zhang
proposed an open question: There might exist an infinitely many-scroll attractor for
that system, where the attractor oscillates as well as it goes to infinity along the x1-
axis. Since the well-known chaotic Lorenz systems have sensitive dependence on
initial conditions, we cannot simulate the systems for a long time, and the numerical
experiments might not reflect the true orbits. This is a very strange and interesting
phenomenon for future work [18, Question 4.1, p.2150101-21].

As the question itself stated, it may be hard to answer at present. Therefore, the ex-
istence of conjoined Lorenz-like attractors may prove to be the next best thing. Now,
how to generate a conjoined Lorenz-like attractor is not only theoretically significant
but also practically important, motivating the work to be presented in this paper.

The new introduced system should satisfy the following three principles:

(1) The system should be a Lorenz-like one with infinitely many lines of non-
hyperbolic equilibria.

(2) The system should generate singularly degenerate heteroclinic cycles or het-
eroclinic orbits with nearby chaotic attractors.

(3) The system should be sensitive dependence on the initial conditions as the
one in [19], which guarantees potential existence of strong connection among
different isolated chaotic attractors.

On the basis of these three simple tips, one tries to construct a new 3D periodically
forced extended Lorenz-like system and find the parameters of conjoined Lorenz-like
attractors by a trial-and-error process.

As far as we know, very few research on the conjoined Lorenz-like attractor is
available in the published literatures. Accordingly, it is a demanding work to reveal
the forming mechanism of it. The main contributions are as follows:

(1) Proposing a new 3D periodically forced extended Lorenz-like system fam-
ily which generates singularly degenerate heteroclinic cycles or heteroclinic
orbits with nearby conjoined Lorenz-like attractors.

(2) Illustrating another new kind of extreme sensitivity to initial conditions, i.e.,
the system’s orbits starting from two very close initial points of any one line
of non-hyperbolic equilibria might converge to another equilibria of either the
same line of non-hyperbolic equilibria and then create singularly degenerate
heteroclinic cycles, or the neighbouring ones and thus forms heteroclinic or-
bits.

(3) Proving the existence of an invariant surface and infinitely many pairs of
heteroclinic orbits.
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The rest of the paper is structured as follows. In Section 2, some basic concepts
are introduced. Section 3 formulates a novel periodically forced extended Lorenz-
like system and presents conjoined Lorenz-like attractors. The basic dynamics, such
as stability, Hopf bifurcation and invariant surface, are analyzed in Section 4. Sec-
tion 5 illustrates singularly degenerate heteroclinic cycles and heteroclinic orbits with
nearby infinitely many isolated coexisting Lorenz-like attractors. In Section 6, one
gives a rigorous proof for the existence of infinitely many pairs of symmetric hetero-
clinic orbits.

2. PRELIMINARY

Consider the differential system ẋ = f(x,ξ), where x ∈ Rn and ξ ∈ Rm are vectors
representing phase variables and control parameters respectively. Assume that f is of
class C∞ in Rn ×Rm. Suppose that system has an equilibrium point x = x0 at ξ = ξ0.
If at least one eigenvalue of the Jacobian matrix associated with linearized vector
field about x0 is zero or has a zero real part, then x0 is said to be non-hyperbolic.

Let R[x,y,z] be the ring of real polynomials in the variables x, y and z . We say that
Q(x,y,z) ∈ R[x,y,z] is a Darboux polynomial of a three dimensional ODEs system if
the time derivative of it satisfies

dQ(x,y,z)
dt

=
∂Q(x,y,z)

∂x
ẋ+

∂Q(x,y,z)
∂y

ẏ+
∂Q(x,y,z)

∂z
ż = k(x,y,z)Q(x,y,z),

where k(x,y,z) is a real polynomial called the cofactor of Q(x,y,z). If Q(x,y,z) is a
Darboux polynomial, then the surface Q(x,y,z) = 0 is known as invariant algebraic
surface. If Q(x,y,z) contains trigonometric functions, then we call it invariant surface.

Let the set of points: S (either connected or disconnected ) be equilibria of ẋ =
f(x,ξ) and D ⊂ Rn to be a domain containing S. Let V : D → R be a continuously
differentiable function such that V (S) = 0 and V (x)> 0 in D\S, V̇ (x)≤ 0 in D. The
derivative of V (x) along the trajectories of ẋ = f(x,ξ), denoted by V̇ (x), is given by
V̇ (x) = Σn

i=1
∂V
∂xi

ẋi = Σn
i=1

∂V
∂xi

fi(x). Then, S is stable. If V̇ (x) < 0 in D\S, then S is
asymptotically stable. Moreover, if D = Rn, then S is globally asymptotically stable.

3. CONJOINED LORENZ-LIKE ATTRACTORS

In light of Lorenz-like systems that easily generate singularly degenerate hetero-
clinic cycles with nearby bifurcated strange attractors, we firstly replace the state
variable x of the following 3D extended Lorenz system [6]:

ẋ = y,
ẏ = mx−ny−mxz− px3,

ż =−az+bx2,
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with sin(2x) and sin(x), and formulates the following new periodically forced ana-
logue: 

ẋ = y,
ẏ = sin(2x)

[
a+ c1z+ c2 sin2 (x)

]
−by,

ż =−d1z+d2 sin2 (x),
(3.1)

where a,b,c1,c2,d1,d2 ∈ R.
Secondly, based on the dynamics of Ez in Proposition 3 in Section 4, we choose the

parameters (a,b,c1,c2,d1,d2) = (12,1.0,−4,−1,0,1) and initial values (x1,2
0 ,y1,2

0 ,

z
′,′′

0 ) = (±1.3,±13,±16)×10−8 +(0,0,2.3710) and (x1,2
0 ,y1,2

0 ,z
′′′,′′′′

0 ) = (±1.3,±13,
±16)×10−8 +(0,0,2.3711). Fig. 1 shows heteroclinic orbits and singularly degen-
erate heteroclinic cycles and nearby conjoined Lorenz-like attractors of system (3.1),
which extends the classical concept of sensitive dependence on the initial conditions,
i.e., the trajectories from two very close initial points (0,0,2.3710) and (0,0,2.3711)
might converge to (±π,0,6.6552) and then create heteroclinic orbits, or (0,0,6.2848)
and thus forms singularly degenerate heteroclinic cycles.

(a) d1 = 0 (b) d1 = 0.05

FIG. 1. (a) Heteroclinic orbits to (0,0,2.3710) and (π,0,6.6552), (0,0,2.3710) and
(−π,0,6.6552); singularly degenerate heteroclinic cycles consisting of (0,0,2.3711) and
(0,0,6.2848) of system (3.1), and (b) nearby conjoined Lorenz-like attractors when
(a,b,c1,c2,d2) = (12,1.0,−4,−1,1), generalizing the classical concept of sensitive depend-
ence on the initial conditions.

Choose other initial conditions (±π,0,1.5), (0,0,1.5), (±π,0,2), (0,0,2), (±2π,
0,2.5), (0,0,2.5) and (±π,0,2.5). Figs. 2-4 also depict ten heteroclinic orbits and
five pairs of singularly degenerate heteroclinic cycles with nearby bifurcated con-
joined Lorenz-like attractors. Fig. 5 illustrates time series of the variable x of con-
joined Lorenz-like attractors with initial conditions (0,0,2) and (0,0,1000π), veri-
fying the complex structures of conjoined Lorenz-like attractors having the charac-
teristics of random walk. Moreover, conjoined Lorenz-like attractors may extend the
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classical concept of boundedness of chaos, i.e., the system orbits beginning from one
sub-two-scroll of that conjoined Lorenz-like attractor might tend to infinity.
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FIG. 2. (a) Heteroclinic orbits to (π,0,1.5) and (2π,0,3.9439), (π,0,2) and
(2π,0,3.3148), (π,0,1.5) and (0,0,3.9439), (π,0,2) and (2π,0,3.3148), (0,0,1.5) and
(π,0,3.9439), (0,0,2) and (π,0,3.3148), (0,0,1.5) and (−π,0,3.9439), (0,0,2) and
(2π,0,3.3148), (−π,0,1.5) and (−2π,0,3.9439), (−π,0,2) and (−2π,0,3.3148) of system
(3.1), and (b) nearby conjoined Lorenz-like attractors when (a,b,c1,c2,d2) =

(12,1.0,−4,−1,1)

(a) d1 = 0 (b) d1 = 0.05

FIG. 3. (a) Singularly degenerate heteroclinic cycles consisting of (−2π,0,2.5) and
(−2π,0,4.0378), (−π,0,2.5) and (−π,0,4.0378), (0,0,2.5) and (0,0,4.0378), (π,0,2.5)
and (π,0,4.0378), (2π,0,2.5) and (2π,0,4.0378) of system (3.1), and (b) nearby conjoined
Lorenz-like attractors when (a,b,c1,c2,d2) = (12,1.0,−4,−1,1).
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FIG. 5. Time series of the variable x of system (3.1) when (a,b,c1,c2,d1,d2) =

(12,1.0,−4,−1,0.05,1), time interval T = [0,2×107], (y2
0,z

2
0) = (1.3×10−8,2+16×10−8)

and (a) x2
0 = 2+16×10−8, (b) x3

0 = 1000π+1.3×10−8, which suggest stochastic behaviors
of conjoined Lorenz-like attractors.

4. BASIC BEHAVIORS

In this section, we mainly give some results on some basic dynamics of system
(3.1), i.e., the distribution of equilibrium points, stability, Hopf bifurcation, etc.

First of all, the distribution of equilibrium points easily follows from the algebraic
structure of system (3.1) and is listed in the following proposition.

Proposition 1.
(1) When d1 = 0, system (3.1) has a family of parallel lines of non-hyperbolic

equilibria Ez = {(kπ,0,z)|k ∈ N,z ∈ R}.
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(2) When a= 0, c1 = d1 ̸= 0 and c2 =−d2 ̸= 0, or c1 =−d1 ̸= 0 and c2 = d2 ̸= 0,
Ep = {(x,0, d2 sin2 x

d1
)|x∈R} is a family of curves of non-hyperbolic equilibria.

(3) When d1 ̸= 0, E0 = {(kπ,0,0)|k ∈ N} is an infinite set of isolated equilibria
in system (3.1) for −ad1

c1d2+c2d1
> 1 or −ad1

c1d2+c2d1
< 0; while 0 < −ad1

c1d2+c2d1
≤ 1,

E± = {(kπ ± 1
2 arcsin

√
−ad1

c1d2+c2d1
,0,− ad2

c1d2+c2d1
)|k ∈ N} are infinitely many

pairs of symmetrical isolated equilibria.

Remark 1. When d1 ̸= 0, a passes through the null value and 0 < −ad1
c1d2+c2d1

≤ 1,
system (3.1) undergoes a generic pitchfork bifurcation at points of E0. While a ̸= 0,
d1 crosses the null value and 0 < −ad1

c1d2+c2d1
≤ 1, system (3.1) undergoes a degenerate

pitchfork bifurcation at points of Ez.

Next, in order to determine the stability and bifurcation of equilibria, we have to
calculate Jacobian matrix associated vector field of system (3.1):

J =

 0 1 0
2cos2x(a+ c1z+ c2 sin2 x)+ c2 sin2 2x −b c1 sin2x

d2 sin2x 0 −d1

 .

One can easily calculate the characteristic equations of points of Ez, E0, Ep and
E±:

(1) The one of each of Ez is

λ
[
λ

2 +bλ−2(a+ c1z)
]
= 0,

with λ1 = 0, λ2,3 =
−b±

√
b2+8(a+c1z)

2 .
(2) The one of each of E0 is

(λ+d1)
[
λ

2 +bλ−2a
]
= 0,

with λ1 =−d1, λ2,3 =
−b±

√
b2+8a

2 .
(3) For c1 = d1 and c2 = −d2 (resp. c1 = −d1 and c2 = d2), the one of each of

Ep is
λ
[
λ

2 +(b+d1)λ+bd1 +d2 sin2 2x
]
= 0,

with λ1 = 0, λ2,3 =
−(b+d1)±

√
(b+d1)2−4(bd1+d2 sin2 2x)

2 (resp.

λ
[
λ

2 +(b+d1)λ+bd1 −d2 sin2 2x
]
= 0,

with λ1 = 0, λ2,3 =
−(b+d1)±

√
(b+d1)2−4(bd1−d2 sin2 2x)

2 ).
(4) The one of points of E± is:

λ
3 +(b+d1)λ

2 +d1

[
b+

4ac2

c1d2 + c2d1

(
1+

ad1

c1d2 + c2d1

)]
λ

+4ad1

(
1+

ad1

c1d2 + c2d1

)
= 0.

(4.1)
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TABLE 1. The dynamical behaviors of points of Ez.

b a+ c1z Property of Ez

> 0
< 0 A 2D W s

loc and a 1D W c
loc

= 0 A 1D W s
loc and a 2D W c

loc
> 0 A 1D W s

loc, a 1D W c
loc and a 1D W u

loc

= 0
< 0 A 3D W c

loc
= 0 A 3D W c

loc
> 0 A 1D W s

loc, a 1D W c
loc and a 1D W u

loc

< 0
< 0 A 1D W c

loc and a 2D W u
loc

= 0 A 2D W c
loc and a 1D W u

loc
> 0 A 1D W s

loc, a 1D W c
loc and a 1D W u

loc

TABLE 2. The dynamical behaviors of points of Ep.

b+d1 −(bd1 ±d2 sin2 2x) Property of Ep

> 0
< 0 A 2D W s

loc and a 1D W c
loc

= 0 A 1D W s
loc and a 2D W c

loc
> 0 A 1D W s

loc, a 1D W c
loc and a 1D W u

loc

= 0
< 0 A 3D W c

loc
= 0 A 3D W c

loc
> 0 A 1D W s

loc, a 1D W c
loc and a 1D W u

loc

< 0
< 0 A 1D W c

loc and a 2D W u
loc

= 0 A 2D W c
loc and a 1D W u

loc
> 0 A 1D W s

loc, a 1D W c
loc and a 1D W u

loc

TABLE 3. The dynamical behaviors of points of E0.

b a Property of E0

> 0
< 0 A 2D W s

loc and a 1D W c
loc

= 0 A 1D W s
loc and a 2D W c

loc
> 0 A 1D W s

loc, a 1D W c
loc and a 1D W u

loc

= 0
< 0 A 3D W c

loc
= 0 A 3D W c

loc
> 0 A 1D W s

loc, a 1D W c
loc and a 1D W u

loc

< 0
< 0 A 1D W c

loc and a 2D W u
loc

= 0 A 2D W c
loc and a 1D W u

loc
> 0 A 1D W s

loc, a 1D W c
loc and a 1D W u

loc

Proposition 2.
(1) When a,b,c1,c2,d1,d2 ∈R, the local dynamical behaviors of points of Ez are

totally summarized in Table 1. While a = 0, c1 = d1 ̸= 0, c2 =−d2 ̸= 0 (resp.
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c1 =−d1 and c2 = d2), −(bd1 +d2 sin2 2x) ∈ R (resp. −(bd1 −d2 sin2 2x) ∈
R), Table 2 lists the local dynamics of each of Ep.

(2) Moreover, for a = 0, b > 0, d1 = −c1 > 0 and d2 = c2 < 0, each of Ep is
globally asymptotically stable. In particular, when

b = d1, Q =
1
2
[
−d2y2 +(−d1z+d2 sin2 x)2]

is an invariant surface with cofactor −2b.

Proof.
(1) Firstly, the local stability of points of Ez and Ep easily follow from the linear

analysis and are omitted here.
(2) Secondly, we discuss the global stability of points of Ep, i.e., each point of

Ep is globally stable. For a = 0, b > 0, d1 =−c1 > 0 and d2 = c2 < 0, set the
following Lyapunov function:

Q =
1
2
[
−d2y2 +(−d1z+d2 sin2 x)2] ,

with
dQ
dt

∣∣
(3.1) = bd2y2 −d1(−d1z+d2 sin2 x)2,

which yields

Q̇ = 0 ⇔ y =−d1z+d2 sin2 x = 0,

which implies the stability of points of Ep. According to LaSalle theorem
[1], each of Ep is also globally asymptotically stable.

In particular, for b = d1 and Q0 = 1
2

[
−d2y2

0 +(−d1z0 +d2 sin2 x0)
2
]
, we

arrive at
dQ
dt

∣∣
(3.1) =−b

[
−d2y2 +(−d1z+d2 sin2 x)2]=−2bQ,

which leads to

0 ≤ Q = Q0e−2b(t−t0) → 0, t →+∞.

Namely, Q is an invariant surface with cofactor −2b. The proof is finished.
□

Proposition 3.
(1) If d1 < 0, then each of E0 is unstable.
(2) If d1 = 0, then the dynamics of points of E0 are the same to the ones of points

of Ez and listed in Table 1.
(3) If d1 > 0, then the dynamics of points of E0 are presented in Table 3.

Proof. The local stability of points of E0 easily follows from the linear analysis
and are omitted here. □
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Proposition 4. Set W = {(a,b,c1,c2,d1,d2)∈R6|0 < −ad1
c1d2+c2d1

≤ 1}, W2 =W\W1

W1 = {(a,b,c1,c2,d1,d2) ∈W |b+d1 > 0,

d1

[
b+

4ac2

c1d2 + c2d1

(
1+

ad1

c1d2 + c2d1

)]
> 0,

4ad1(1+
ad1

c1d2 + c2d1
)> 0}

and

W 1
1 = {(a,b,c1,c2,d1,d2) ∈W1 : Σ < 0},

W 2
1 = {(a,b,c1,c2,d1,d2) ∈W1 : Σ = 0},

W 3
1 = {(a,b,c1,c2,d1,d2) ∈W1 : Σ > 0},

where Σ = d1

[
(b+d1)(b+ 4ac2

c1d2+c2d1
(1+ ad1

c1d2+c2d1
))−4a(1+ ad1

c1d2+c2d1
)
]
.

The following two assertions hold.
(1) Points of E± are unstable when (a,b,c1,c2,d1,d2) ∈W 1

1 ∪W2 whereas points
of E± are asymptotically stable when (a,b,c1,c2,d1,d2) ∈W 3

1 .
(2) While (a,b,c1,c2,d1,d2) ∈W 2

1 , system (3.1) simultaneously undergoes Hopf
bifurcation at points of E±.

Proof.
(1) The proof of stability of points of E± easily follows from Routh-Hurwitz

criterion and is omitted here.
(2) Assume λ1 =−(b∗+d1)< 0, λ2,3 =±ωi with

ω =

√
d1

[
b∗+

4ac2

c1d2 + c2d1
(1+

ad1

c1d2 + c2d1
)

]
,

where b∗ satisfies

d1

[
(b∗+d1)

(
b∗+

4ac2

c1d2 + c2d1

(
1+

ad1

c1d2 + c2d1

))
−4a

(
1+

ad1

c1d2 + c2d1

)]
= 0.

Calculating the derivatives on both sides of Eq. (4.1) with respect to b and substituting
λ with ωi lead to

dRe(λ2)

db

∣∣∣∣
b=b∗

=− ω2 +d1(b∗+d1)

2 [ω2 +(b∗+d1)2]
̸= 0,

which validates the condition of the transversality.
Consequently, Hopf bifurcation simultaneously happens at points of E±, as shown

in Fig. 6. The proof is completed.
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□
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FIG. 6. Hopf bifurcation of system (3.1) when (a,b,c1,c2,d1,d2) =

(1,−1 +
√

2,−1,−1,1,1) and (x4,5
0 ,y4,5

0 ,z4,5
0 ) = (± π

4 ,0,
1
2 ) + (±1.3,±1.3,±1.6) × 10−3,

(x6,7
0 ,y6,7

0 ,z6,7
0 ) = (± 3π

4 ,0, 1
2 ) + (±1.3,±1.3,±1.6) × 10−3,(x8,9

0 ,y8,9
0 ,z8,9

0 ) =

(± 5π

4 ,0, 1
2 )+(±1.3,±1.3,±1.6)×10−3.

5. SINGULARLY DEGENERATE HETEROCLINIC CYCLES WITH NEARBY
ISOLATED LORENZ-LIKE ATTRACTORS

Except for conjoined Lorenz-like attractors shown in Figs. 1-3, with suitable
choices of parameters and initial conditions, this section detects singularly degen-
erate heteroclinic cycles and heteroclinic orbits, whose broken generates infinitely
many isolated coexisting Lorenz-like attractors as the ones in [17,19]. Unfortunately,
we are not able to give a rigorous proof of the existence of singularly degenerate
heteroclinic cycles of system (3.1) by now. To achieve this target, we only resort to
the numerical simulation. Aiming at coining some new phenomena, the following
numerical results are illustrated.

Case (1): d1 = 0,0.06, (a,b,c1,c2,d2) = (2,0.5,−3,−1,1), E1
z = (0,0,−3),

E2
z = (0,0,0.1), E3

z = (0,0,0.4), E4
z = (0,0,−2), E5

z = (0,0,0).
Numerical Result. 4.1:

(1) For d1 = 0, the 1D W u(E1,2,3
z ) of each normally hyperbolic saddles E1,2,3

z
tend toward one of the normally hyperbolic stable foci (0,0,1.4133),
(0,0,2.8513) and (0,0,1.2887) in the line (0,0,z) as t → ∞, which cre-
ates singularly degenerate heteroclinic cycles, while 1D W u(E4,5

z ) of
each normally hyperbolic saddles E4,5

z tend toward the normally hyper-
bolic stable foci (±π,0,1.4344) and (±π,0,2.4165) in the line (±π,0,z)
as t → ∞, which forms heteroclinic orbits, as shown in Fig. 7(a).
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(2) For d1 = 0.06, the broken of singularly degenerate heteroclinic cycles
consisting of E3

z and (0,0,1.2887) , and heteroclinic orbits to E4
z and

(±π,0,1.4344) creates chaotic attractors that circle around the line
(0,0,z); the broken of singularly degenerate heteroclinic cycles consist-
ing of E1,2

z , and heteroclinic orbits to E5
z and (±π,0,2.4165) creates

chaotic attractors that circle around (±π,0,z), as depicted in Fig. 7(b).
Case (2): d1 = 0,0.06, b = 0.5,0.738,0.759, (a,c1,c2,d2) = (2,−3,−1,1),

E6
z = (0,0,−1), E7,8

z = (±π,0,−1), E9,10
z = (±π,0,0), E11,12

z = (±π,0,−2),
E13

z = (0,0, −2).
Numerical Result. 4.2:

(3) For d1 = 0 and b = 0.5, the 1D W u(E6,7,8
z ) of each normally hyperbolic

saddles E6,7,8
z tend toward one of the normally hyperbolic stable foci

(0,0,2.2345) and (±π,0,2.2345) as t → ∞, which forms singularly de-
generate heteroclinic cycles; while 1D W u(E9,10,11,12,13,5

z ) of each nor-
mally hyperbolic saddles E9,10,11,12,13,5

z tend toward the normally hy-
perbolic stable foci (±2π,0,2.4165), (0,0,2.4165), (±2π,0, 1.4344),
(0,0,1.4344), (±π,0,1.4344) and (±π,0,2.4165), as t → ∞, which cre-
ates heteroclinic orbits, as illustrated in Fig. 8(a).

(4) For d1 = 0.06, the broken of singularly degenerate heteroclinic cycles
consisting of E6,7,8

z , and heteroclinic orbits to E9,10
z (resp. E5

z ) and
(±2π,0,2.4165) and (0,0,2.4165) (resp. (±π,0,2.4165)) creates chao-
tic attractors that circle around (±2π,0,z) and (0,0,z) (resp. (±π,0,z));
the broken of heteroclinic orbits to E11,12,13

z generates chaotic attractors
that circle around (±π,0,z) and (0,0,z), as depicted in Fig. 8(b).

Numerical Result. 4.3:
(5) For d1 = 0 and b = 0.738, the 1D W u(E5,9,10

z ) of each normally hyper-
bolic saddles E5,9,10

z tend toward normally hyperbolic stable foci (0,0,
4.0264) and (±π,0, 4.0264) as t → ∞, which forms singularly degen-
erate heteroclinic cycles; while 1D W u(E6,7,8,11,12,13

z ) of each normally
hyperbolic saddles E6,7,8,11,12,13

z tends toward the normally hyperbolic
stable foci (±π,0,2.0143), (±2π,0, 2.0143), (0,0,2.0143), (±2π,0,
2.0641), (±π,0,2.0641) and (0,0,2.0641) as t → ∞, which generates
heteroclinic orbits, as displayed in Fig. 9(a).

(6) For d1 = 0.06, the broken of singularly degenerate heteroclinic cycles
consisting of E5,9,10

z generates chaotic attractors that circle around (±π,

0,z), (±2π,0,z) and (0,0,z); the broken of heteroclinic orbits to E6,7,8
z

(resp. E11,12,13
z ) creates chaotic attractors that circle around (±π,0,z),

(±2π,0,z) and (0,0,z) (resp. (±π,0,z) and (0,0,z)), as depicted in
Fig. 9(b).
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Numerical Result. 4.4:
(7) For d1 = 0 and b = 0.759, the 1D W u(E5,9,10

z ) of each normally hyper-
bolic saddles E5,9,10

z tend toward normally hyperbolic stable foci (0,0,
2.4165) and (±π,0, 2.4165) as t → ∞, which forms singularly degen-
erate heteroclinic cycles, while 1D W u(E6,7,8,11,12,13

z ) of each normally
hyperbolic saddles E6,7,8,11,12,13

z tends toward the normally hyperbolic
stable foci (±π,0,2.2345), (±2π,0,2.2345), (0,0,2.2345), (±2π,0
1.4344), (±π,0,1.4344) and (0,0,1.4344) as t → ∞, which generates
heteroclinic orbits, as displayed in Fig. 10(a).

(8) For d1 = 0.06, the broken of singularly degenerate heteroclinic cycles
consisting of E5,9,10

z generates chaotic attractors that circle around (±π,

0,z) and (0,0,z); the broken of heteroclinic orbits to E6,7,8
z (respect-

ively E11,12,13
z ) creates chaotic attractors that circle around (±π,0,z),

(±2π,0,z) and (0,0,z) (resp. (±π,0,z) and (0,0,z)), as depicted in
Fig. 10(b).

Remark 2. Numerical Result. 4.1-4.4 demonstrate that the creation of
singularly degenerate heteroclinic cycles and heteroclinic orbits with nearby
isolated Lorenz-like attractors depends not only the initial conditions but also
parameters.
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FIG. 7. Coexistence of singularly degenerate heteroclinic cycles and heteroclinic or-
bits with nearby isolated strange attractors of system (3.1) when (a,b,c1,c2,d2) =

(2,0.5,−3,−1,1) and initial conditions E1
z = (0,0,−3), E2

z = (0,0,0.1), E3
z = (0,0,0.4),

E4
z = (0,0,−2), E5

z = (0,0,0).
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(a) d1 = 0 (b) d1 = 0.06

FIG. 8. Coexistence of singularly degenerate heteroclinic cycles and heteroclinic or-
bits with nearby isolated strange attractors of system (3.1) when (a,b,c1,c2,d2) =

(2,0.5,−3,−1,1), E6
z = (0,0,−1), E7,8

z = (±π,0,−1), E9,10
z = (±π,0,0), E11,12

z =

(±π,0,−2), E13
z = (0,0,−2) and E5

z = (0,0,0).

(a) d1 = 0 (b) d1 = 0.06

FIG. 9. Coexistence of singularly degenerate heteroclinic cycles with and hetero-
clinic orbits nearby isolated strange attractors of system (3.1) when (a,b,c1,c2,d2) =

(2,0.738,−3,−1,1), E6
z = (0,0,−1), E7,8

z = (±π,0,−1), E9,10
z = (±π,0,0), E11,12

z =

(±π,0,−2), E13
z = (0,0,−2) and E5

z = (0,0,0).
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(a) d1 = 0 (b) d1 = 0.06

FIG. 10. Coexistence of singularly degenerate heteroclinic cycles and heteroclinic
orbits with nearby isolated strange attractors of system (3.1) when (a,b,c1,c2,d2) =

(2,0.759,−3,−1,1), E6
z = (0,0,−1), E7,8

z = (±π,0,−1), E9,10
z = (±π,0,0), E11,12

z =

(±π,0,−2), E13
z = (0,0,−2) and E5

z = (0,0,0).

6. EXISTENCE OF HERTEROCLINIC ORBITS

In this section, we prove that there exists an infinite set of herteroclinic orbits in
system (3.1) when a > 0, b > 0, d1 > 0, c1d2 > 0, c1d2+c2d1 < 0 and 0 < −ad1

c1d2+c2d1
≤

1, as [10, 11, 14–16].
To facilitate derivation, denote by φt(q0) = (x(t;x0),y(t;y0),z(t;z0)) any one solu-

tion of system (3.1) with the initial point q0 = (x0,y0,z0)∈R3. Since in this case W u
loc

is one-dimensional according to Proposition 3, we can denote γ = {φt(q0)|t ∈ R} be
the unstable manifold of system (3.1) at points of E0.

Firstly, set the first Lyapunov function

V (φt(q0)) =
1
2

[
− d1

c1d2 + c2d1
y2 − c1

d2(c1d2 + c2d1)
(−d1z+d2 sin2 (x))2

+

(
ad1

c1d2 + c2d1
+ sin2 (x)

)2
]
.

Then, the derivative of V along the trajectories of system (3.1) is calculated as
follows:

dV (φt(q0))

dt

∣∣
(3.1) =

c1d1

d2(c1d2 + c2d1)
(−d1z+d2 sin2 (x))2

+
bd1

c1d2 + c2d1
y2.

(6.1)
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First of all, one introduces the following result.

Proposition 5. When a > 0, b > 0, d1 > 0, c1d2 > 0, c1d2 + c2d1 < 0 and 0 <
−ad1

c1d2+c2d1
≤ 1, we derive the following two assertions.

(a) If ∃ t1,2, such that t1 < t2 and V (φt1(q0)) = V (φt2(q0)), then q0 is one of the
equilibrium points of system (3.1).

(b) If limt→−∞ φt(q0) ∈ E0 and q0 ̸= E0, then V (E0)>V (φt(q0)) for all t ∈ R.

Proof.

(a) Since dV (φt(q0))
dt

∣∣
(3.1) ≤ 0 when a > 0, b > 0, d1 > 0, c1d2 > 0, c1d2+c2d1 < 0 and

0 < −ad1
c1d2+c2d1

≤ 1, it follows from Eq. (6.1) that dV (φt(q0))
dt

∣∣
(3.1) = 0, ∀t ∈ (t1, t2),

which thus suggests that q0 is one of equilibria, i.e.,

ẋ(t;x0)≡ ẏ(t;y0)≡ ż(t;z0)≡ 0. (6.2)

Actually, ẋ(t;x0) = y = 0 implies x(t) = x0 and ẏ(t,y0) = 0, y(t) = y0 = 0, ∀t ∈R.
In a word, φt(q0) ∈ {y = 0}∩

{
−d1z+d2 sin2 x = 0

}
leads to (6.2).

(b) We first prove that V (E0) > V (φt(q0)) for all t ∈ R. Suppose that V (E0) ≤
V (p(t;q0)) for some t ∈R. Then the above result (a) reads that q0 is one of equi-
libria of system (3.1) and q0 /∈ E0. This contradicts the fact that limt→−∞ φt(q0)∈
E0. Hence, it follows that V (E0)>V (φt(q0)) for all t ∈ R.

□

Using Proposition 5, the existence of heteroclinic orbits to points of E0 and E± is
derived in the following statement.

Proposition 6. Consider a > 0, b > 0, d1 > 0, c1d2 > 0, c1d2 + c2d1 < 0 and
0 < −ad1

c1d2+c2d1
≤ 1. Then the following statements are true.

(i) Neither homoclinic orbits nor heteroclinic orbits to points of E+ or E− exist in
system (3.1).

(ii) System (3.1) has infinitely many heteroclinic orbits to points of E0 and E±.

Proof.
(i) Let us first prove that there is no heteroclinic/homoclinic orbits to points of E+

or E− in system (3.1) when a > 0, b > 0, d1 > 0, c1d2 > 0, c1d2 +c2d1 < 0 and
0 < −ad1

c1d2+c2d1
≤ 1.

Suppose that p(t) = (x,y,z) (it belongs to the set of φt(q0)) is a homoclinic
orbit of system (3.1) or a heteroclinic orbit to E

′
+ or E

′
−, where ∀E

′
+ ∈ E+ and

∀E
′
− ∈ E−. Namely, p(t) is a solution of system (3.1) such that lim

t→−∞
p(t) =

e−, lim
t→+∞

p(t) = e+, where points e− and e+ satisfy either e− = e+ ∈
{

E
′
−,E

′
0,

E
′
+

}
or {e−,e+}= {E

′
−,E

′
+} with ∀E

′
0 ∈ E0. From (6.1), one has

V (e−)≥V (p(t))≥V (e+).
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In either case, one only has the relation V (e−) =V (e+), which suggests V (p(t))
≡V (e−). According to the assertion (a) of Proposition 5, p(t) is just one of the
equilibrium points of system (3.1). Therefore, neither homoclinic orbits nor
heteroclinic orbits to points of E+ and E− exist in system (3.1).

(ii) Next, let us show that γ is any one heteroclinic orbit to E
′
0 and E

′
+, i.e., lim

t→+∞
p(t)

= E
′
+. From the definition of γ and the conclusion (ii) of Proposition 5 one can

get V (E
′
0) > V (p(t;q0)). This demonstrates that p(t) does not approach E

′
0 as

t →+∞. Therefore, lim
t→+∞

p(t) = E
′
+.

Lastly, we prove that, if system (3.1) has a heteroclinic orbit to E
′
0 and E

′
+, then this

orbit belongs to γ.
Denote by p∗(t) = (x∗(t),y∗(t),z∗(t)) be a solution of system (3.1) such that

lim
t→−∞

p∗(t) = e−1 , lim
t→+∞

p∗(t) = e+1 ,

where e−1 and e+1 satisfy {e−1 ,e
+
1 }= {E

′
0,E

′
+}. Like for (6.2), one obtains from (6.1)

that for all t ∈R, V (e−1 )≥V (p∗(t))≥V (e+1 ). Since V (E
′
0)>V (E

′
+), we have e−1 =E

′
0

and e+1 = E
′
+, i.e.,

lim
t→−∞

p∗(t) = E
′
0, lim

t→+∞
p∗(t) = E

′
+,

which yields p∗(t) ∈ γ based on the assertion (b) of Proposition 5. As the orbits are
symmetrical w.r.t. the z–axis, there still exists a unique heteroclinic orbit q∗(t) ∈ γ

symmetrical to p∗(t), which satisfies

lim
t→−∞

q∗(t) = E
′
0, lim

t→+∞
q∗(t) = E

′
−.

As E0 and E± contain infinitely many isolated stationary points E
′
0 and E

′
±, there

exist infinitely many heteroclinic orbits to points of E0 and E±. This theoretical result
is also verified via numerical simulation, as shown in Fig. 11. The proof is over.

□
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