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valued and multi-valued), namely for Ćirić type operators. Then, an application to homotopy
principles is given. Our results complement and extend the works in the literature.

2010 Mathematics Subject Classification: 47H10; 54H25
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1. INTRODUCTION AND PRELIMINARIES

Let (X ,d) be a metric space and f : X → X be an operator. For each x ∈ X , we
denote O(x,∞) = {x, f(x), . . . , fn(x), . . .}.

Let x0 be a given point in X and r > 0. The set B(x0;r) := {x ∈ X : d(x0,x)< r} is
the open ball of center x0 and radius r, while B̃(x0;r) := {x ∈ X : d(x0,x)≤ r} is the
closed ball of center x0 and radius r.

We will now recall some definitions and well-known results, which will be useful
throughout the paper.

Definition 1 ([4, Cirić Definition page 268]). Let (X ,d) be a metric space and
f : X → X be an operator. Then X is said to be f-orbitally complete if every Cauchy
sequence contained in O(x,∞), for some x ∈ X , converges in X .

In the above context, a sequence of Picard iterates starting from x0 ∈ X is a se-
quence xn := fn(x0), for n ∈ N∗.

Definition 2 ([4, Cirić Definition 1]). Let (X ,d) be a metric space. Then, f : Y ⊆
X → X is a single-valued Ćirić type operator with constant q if there exists a number
q ∈ (0,1), such that for all x,y ∈ Y we have

d(f(x), f(y))≤ q ·max{d(x,y),d(x, f(x)),d(y, f(y)),d(x, f(y)),d(y, f(x))} .
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Let (X ,d) be a metric space. By P(X) we denote the family of all nonempty
subsets of X , and the family of all nonempty and closed subsets of X is denoted with
Pcl(X). Throughout the paper, we consider the following distances (see, e.g., [9,10]):

(1) The gap functional (generated by d) between a point a∈X and a set Y ∈P(X)
is

D(a,Y ) := inf{d(a,y) | y ∈ Y} .
(2) The Pompeiu-Hausdorff functional (generated by d) between two sets A,B ∈

P(X) is

H(A,B) := max
{

sup
a∈A

( inf
b∈B

d(a,b)),sup
b∈B

( inf
a∈A

d(a,b))
}
.

If F : X → P(X) is a multi-valued operator, then its fixed point set is denoted by
Fix(F) := {x ∈ X | x ∈ F(x)}, while the graph of F is the set Graph(F) := {(x,y) ∈
X ×X | y ∈ F(x)}. The set of all strict fixed points of F is denoted by SFix(F), i.e.,
there exists x∗ ∈ X such that F(x∗) = {x∗}.

In this paper, we will present several existence and localization fixed point the-
orems and stability results for the fixed point problem involving some very general
classes of operators (single-valued and multi-valued), namely for Ćirić type operat-
ors. Then, some applications to homotopy principles are given. Our results comple-
ment and extend some works in the literature, see e.g. [1–4, 6, 8, 11].

2. A STUDY OF THE FIXED POINT EQUATION WITH GENERALIZED ĆIRIĆ
OPERATORS

In this section, the single-valued case is taken into consideration. We first recall
Ćirić’s Theorem which appeared in the well-known paper from 1974, see [4].

Theorem 1 ([4, Cirić Theorem 1]). Let (X ,d) be a metric space and f : X → X be
a Ćirić type operator with constant q ∈ (0,1). Suppose that X is f-orbitally complete.
Then:

(i) f has a unique fixed point x∗ in X and lim
n→∞

f n(x) = x∗, i.e., f is a Picard
operator;

(ii) d( f n(x),x∗)≤ qn

1−q
d(x, f(x)), for every x ∈ X and every n ∈ N∗.

Our first main result, which generalizes the above theorem, is an existence, unique-
ness and localization for the unique fixed point of a single-valued Ćirić type operator.

Theorem 2. Let (X ,d) be a complete metric space, x0 ∈ X and r > 0. We consider
f : B(x0;r)→ X a single-valued Ćirić type operator with constant q ∈

(
0, 1

2

)
. We also

suppose that

d(x0, f(x0))<
1−2q
1−q

r.
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Then f has a unique fixed point x∗ ∈ B(x0;r), f n(x0) ∈ B(x0;r), for all n ∈ N and the
sequence ( f n(x0))n∈N of Picard iterates starting from x0 converges to x∗ as n −→ ∞.

Proof. Let 0 < s < r such that

d(x0, f(x0))≤
1−2q
1−q

s <
1−2q
1−q

r.

The sequence (xn)n∈N, with xn := fn(x0), has the recurrent form xn+1 = f(xn), for all
n ∈ N. Then,

d(x1,x2) = d(f(x0), f(x1))

≤ qmax{d(x0,x1),d(x0,x1),d(x1,x2),d(x0,x2)d(x1,x1)}
= qmax{d(x0,x1),d(x1,x2),d(x0,x2)}
≤ qmax{d(x0,x1),d(x1,x2),d(x0,x1)+d(x1,x2)}
= q(d(x0,x1)+d(x1,x2)) ,

implying

d(x1,x2)≤
q

1−q
d(x0,x1).

We denote h :=
q

1−q
, thus

1−2q
1−q

= 1− h with h ∈ (0,1). Using the mathematical

induction, we can prove the inequality

d(xn−1,xn)≤ hn−1d(x0,x1)

holds for all n ∈ N∗. We also know that d(x0,x1)≤ (1−h)s.
By taking a point n ∈ N∗ arbitrarily, we obtain

d(x0,xn)≤ d(x0,x1)+d(x1,x2)+ · · ·+d(xn−1,xn)

≤ d(x0,x1)+hd(x0,x1)+ · · ·+hn−1d(x0,x1)

= d(x0,x1)(1+h+ · · ·+hn−1)

=
1−hn

1−h
d(x0,x1)≤

1
1−h

d(x0,x1)≤ s,

proving that all elements of the sequence are in the closed ball B̃(x0;s).
We will continue by proving that the sequence considered is Cauchy in X . Let

m ∈ N and n ∈ N∗. We compute

d(xm,xm+n)≤ d(xm,xm+1)+ · · ·+d(xm+n−1,xm+n)

≤ hmd(x0,x1)+ · · ·+hm+n−1d(x0,x1)

= hmd(x0,x1)
(
1+h+ · · ·+hn−1)

= hm 1−hn

1−h
d(x0,x1)
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≤ hm

1−h
d(x0,x1).

This relation leads us to the conclusion that (xn)n∈N is a Cauchy sequence. Moreover,
due to the completeness of (X ,d), we obtain it is also convergent to a point x∗ ∈
B̃(x0;s). We will prove that x∗ is a fixed point. We compute the following inequality

d(x∗, f(x∗))≤ d(x∗,xn+1)+d(xn+1, f(x∗))

≤ d(x∗,xn+1)+qmax{d(xn,x∗),d(xn,xn+1),d(x∗, f(x∗)),

d(x∗,xn+1),d(xn, f(x∗))}
≤ d(x∗,xn+1)+qmax{d(xn,xn+1),d(x∗,xn+1),d(xn,x∗)+d(x∗, f(x∗))}
≤ d(x∗,xn+1)+q [d(xn,xn+1)+d(xn+1,x∗)+d(x∗, f(x∗))] ,

which implies

d(x∗, f(x∗))≤ 1+q
1−q

d(xn+1,x∗)+
q

1−q
[d(xn,xn+1)] , for all n ∈ N.

We only need to let n −→ ∞ in the above inequality, and we will obtain d(x∗, f(x∗)) =
0, proving that x∗ is a fixed point for f.

For the uniqueness of the fixed point, we suppose by contradiction that there exists
another fixed point y∗, with x∗ ̸= y∗. Then,

d(x∗,y∗) = d(f(x∗), f(y∗))

≤ qmax{d(x∗,y∗),d(x∗,x∗),d(y∗,y∗),d(x∗,y∗),d(y∗,x∗)}= qd(x∗,y∗),

which is a contradiction due to the fact that q <
1
2

. □

We now denote by S(Y,X) the family of all operators from Y to X , where X is a
metric space and Y a closed subset of X , and by

S∂Y (Y,X) :=
{

f ∈ S(Y,X) such that f|∂Y
: ∂Y → X is fixed point free

}
.

We will introduce the concept of a family of single-valued Ćirić type operators
with constant q.

Definition 3. Let (X ,d) be a metric space and (J,ρ) be a metric space. We say that
{fλ : λ ∈ J} ⊂ S(Y,X) is a family of single-valued Ćirić type operators with constant
q ∈ (0,1) if the following conditions are satisfied: there exist p ∈ (0,1] and M > 0
such that

(i) for all x1,x2 ∈ Y and λ ∈ J, we have

d(fλ(x1), fλ(x2))≤ qmax{d(x1,x2),d(x1, fλ(x1)),d(x2, fλ(x2)),

d(x1, fλ(x2)),d(x2, fλ(x1))} ;

(ii) for all x ∈ Y and λ,µ ∈ J, we have

d(fλ(x), fµ(x))≤ M [ρ(λ,µ)]p .
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The following homotopy result can now be proved.

Theorem 3. Let (X ,d) be a complete metric space and Y be a closed subset such
that int Y ̸=∅. Let (J,ρ) be a connected metric space and{fλ : λ ∈ J} be a family of
single-valued Ćirić type operators with constant q ∈

(
0, 1

2

)
from S∂Y (Y,X). Then the

following conclusions occur:
(i) If there exists a point λ∗

0 ∈ J, such that the equation fλ∗
0
(x) = x has a solution,

then the equation fλ(x) = x has a unique solution for any λ ∈ J;
(ii) If fλ(xλ) = xλ, for any λ ∈ J, then the operator

j : J → int Y, j(λ) = xλ

is continuous.

Proof. We will begin the proof by considering two fixed points, xλ a fixed point of
fλ and xµ a fixed point of fµ. Then,

d(xλ,xµ) = d(fλ(xλ), fµ(xµ))

≤ d(fλ(xλ), fλ(xµ))+d(fλ(xµ), fµ(xµ)).

Taking d(fλ(xλ), fλ(xµ)) separately, we compute

d(fλ(xλ), fλ(xµ))≤ qmax{d(xλ,xµ),d(xλ, fλ(xλ)),d(xµ, fλ(xµ)),d(xλ, fλ(xµ)),

d(xµ, fλ(xλ))}
= qmax

{
d(xλ,xµ),d(xµ, fλ(xµ)),d(xλ, fλ(xµ))

}
≤ qmax

{
d(xλ,xµ),d(xλ,xµ)+d(xλ, fλ(xµ)),d(xλ, fλ(xµ))

}
= q [d(xλ,xµ)+d(xλ, fλ(xµ))] ,

which implies
d(fλ(xλ), fλ(xµ))≤

q
1−q

d(xλ,xµ).

Using the latter inequality together with the first one, we obtain

d(xλ,xµ)≤
q

1−q
d(xλ,xµ)+d(fλ(xµ), fµ(xµ))

≤ q
1−q

d(xλ,xµ)+M [ρ(λ,µ)]p

entailing

d(xλ,xµ)≤
1−q
1−2q

M [ρ(λ,µ)]p .

Let us consider the set

Q = {λ ∈ J | ∃xλ ∈ int Y such that xλ = fλ(xλ)} .
In addition to J being a connected space, by proving that Q is both closed and open,
will lead us to Q = J, proving (i). For the closedness of Q, let (λn)n∈N ⊂ Q such that
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λn → λ∗, and we show that λ∗ ∈ Q. We consider xλm = fλm(xλm) and xλn = fλn(xλn)
and we know that

d(xλm ,xλn)≤
1−q
1−2q

M [ρ(λm,λn)]
p . (2.1)

We already know that the sequence (λn)n∈N is Cauchy in J, which implies that for an
arbitrary ε > 0 there exists nε ∈ N with m,n ∈ N, m,n > nε such that

ρ(λm,λn)< ε. (2.2)

We will denote
εpM(1−q)

1−2q
=: ε′ > 0. Using this notation, together with relations

(2.1) and (2.2), we get

d(xλm ,xλn)< ε
′,

which proves the sequence (xλn) is Cauchy in X . Also, since (X ,d) is a complete
space, we obtain (xλn) is a convergent sequence in Y . Let us now denote the limit of
this sequence by xλ∗ , and we compute

d(xλ∗ , f(xλ∗))≤ d(xλ∗ ,xλn+1)+d(xλn+1 , f(xλ∗))

≤ d(xλ∗ ,xλn+1)+qmax
{

d(xλn ,xλ∗),d(xλn ,xλn+1),d(xλ∗ , f(xλ∗)),

d(xλn , f(xλ∗)),d(xλ∗ ,xλn+1)
}

≤ d(xλ∗ ,xλn+1)+q
[
d(xλn ,xλ∗)+d(xλn ,xλn+1)+d(xλ∗ , f(xλ∗))

+ d(xλn , f(xλ∗))+d(xλ∗ ,xλn+1)
]
.

The inequality obtained above implies that for all n ∈ N,

d(xλ∗ , f(xλ∗))≤ 1
1−2q

[
(1+2q)d(xλn ,xλ∗)+q

(
d(xλn ,xλn+1)+d(x∗

λ
,xλn+1)

)]
,

and by letting n −→ ∞, we get that xλ∗ is a fixed point for f. Since f is fixed point free
on its boundary, then λ∗ belongs to Q, proving it is closed.

In order to show that Q is open, we consider λ0 ∈ Q. Then, there exists a point
xλ0 ∈ int Y such that xλ0 = fλ0(xλ0). Now, we will prove the existence of an ε > 0 and
an open ball B(λ0;ε)⊂ Q. Due to int Y being an open set and xλ0 ∈ int Y , there exists

an open ball B(xλ0 ;r)⊆ int Y . We consider arbitrary ε > 0 such that ε
p <

1−2q
M(1−q)

r

and an arbitrary λ ∈ B(λ0;ε), and we prove that λ ∈ Q. Let us begin by estimating
the following distance

d(fλ(xλ0),xλ0) = d(fλ(xλ0), fλ0(xλ0))

≤ M(ρ(λ,λ0))
p ≤ Mε

p

≤ 1−2q
1−q

r.
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From the inequality above, we get that the operator

fλ : B(xλ0 ;r)→ X

is a Ćirić type operator, and using the local fixed point theorem for Ćirić type operat-
ors, we obtain that Fix(fλ) ̸=∅, implying λ ∈ Q.

Based on what we proved so far, the operator j is single-valued. We consider
λ, µ ∈ J and we have

d(j(λ), j(µ))≤ 1−q
1−2q

M [ρ(λ,µ)]p .

Letting

ρ(λ,µ)< δ :=
[

ε(1−2q)
M(1−q)

] 1
p

,

we immediately obtain that d(j(λ), j(µ))< ε, proving that j is a continuous operator.
□

3. A STUDY OF THE FIXED POINT EQUATION WITH MULTI-VALUED
GENERALIZED ĆIRIĆ OPERATORS

We first consider some notions related to our main results.

Definition 4. An operator F: X → Pcl(X) is said to be a multi-valued generalized
contraction if for every x,y ∈ X there exist non-negative numbers p,q,r, which may
depend on both x and y, such that sup{p+2q+2r | x,y ∈ X}< 1 and

H(F(x),F(y))≤ p ·d(x,y)+q · [D(x,F(x))+D(y,F(y))]+r · [D(x,F(y))+D(y,F(x))] .

Definition 5 ([2, A. Amini-Harandi Definition 2.1]). Let (X ,d) be a metric space.
The set-valued map F: Y ⊆ X → Pb,cl(X) is said to be a multi-valued Ćirić type
operator with constant k (named a k-set-valued quasi-contraction in [2]) if

H(F(x),F(y))≤ k max{d(x,y),D(x,F(x)),D(y,F(y)),D(x,F(y)),D(y,F(x))} ,

for any x,y ∈ X , where 0 ≤ k < 1.

We have the following example of a multi-valued Ćirić type operator, which is not
a multi-valued generalized contraction.

Example 1. Let

X1 =
{m

n
: m = 0,1,2,4,6, . . . ; n = 1,3,7, . . . ,2k+1, . . .

}
,

X2 =
{m

n
: m = 1,2,4,6,8, . . . ; n = 2,5,8, . . . ,3k+2, . . .

}
,



898 M. MOGA AND R. TRUŞCĂ

where k ∈ N and let X = X1 ∪X2. Let us define F: X → X by

F(x) =

{{2
3 x, 6

7 x
}
, x ∈ X1,

1
5 x, x ∈ X2.

The mapping F is a multi-valued Ćirić type operator with q =
6
7

. If both x and y
are in X1 or in X2, then

H(F(x),F(y))≤ 6
7

d(x,y).

If we take x ∈ X1 and y ∈ X2, then we have that

x ≥ 7
30

y implies H(F(x),F(y)) =
6
7

(
x− 7

30
y
)
≤ 6

7

(
x− 1

5
y
)
=

6
7

D(x,F(y)),

x <
7
30

y implies H(F(x),F(y)) =
6
7

(
7
30

y− x
)
≤ 6

7
(y− x) =

6
7

d(x,y).

Therefore, we have that F satisfies the following condition:

H(F(x),F(y))≤ 6
7

max{d(x,y),D(x,F(y)),D(y,F(x))} ,

and hence, it is a multi-valued Ćirić type operator.
In the following step, we show that F is not a multi-valued generalized contraction

on X . Let x = 1 and y = 1
2 . Then we have that

p ·d(x,y)+q · [D(x,F(x))+D(y,F(y))]+ r · [D(x,F(y))+D(y,F(x))] =

=
1
2

p+
4

10
q+

88
70

r < (p+2q+2r)
88
140

<

<
88
140

<
53
70

= H(F(x),F(y)),

as p+2q+2r < 1. Thus, we can see that F is not a multi-valued generalized contrac-
tion.

If (X ,d) is a metric space and F: X → P(X) is a multi-valued operator, then a
sequence (xn)n∈N from X is called a sequence of Picard type starting from (x,y) ∈
Graph(F) if x0 = x,x1 = y and xn ∈ F(xn−1),n ∈ N∗.

The following lemma is useful for our following results.

Lemma 1 (Cauchy’s Lemma). Let (an),(bn) be two sequences of positive numbers

such that ∑
n≥0

an < ∞ and lim
n→∞

bn = 0. Then lim
n→∞

(
n

∑
k=0

an−kbk

)
= 0.
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Theorem 4 ([2, A. Amini-Harandi Theorem 2.2]). Let (X ,d) be a complete metric
space. Let F: X →Pb,cl(X) be a multi-valued Ćirić type operator with constant k < 1

2 .
Then, F has a fixed point.

Here we will give a constructive proof of this theorem, as well as some data de-
pendence and stability results for the fixed point problem x ∈ F(x).

Theorem 5. Let (X ,d) be a complete metric space. Let F: X → Pcl(X) be a multi-
valued Ćirić type operator with constant k < 1

2 . Then:

(i) Fix(F) ̸=∅ and for every (x,y) ∈ Graph(F) there exists a sequence (xn)n∈N
of Picard type starting from x0 := x, x1 := y which converge to a fixed point
x∗ of F;

(ii) the fixed point equation x ∈ F(x) has the data dependence property, i.e., for
any x∗ ∈ Fix(F) and any G : X → P(X) such that Fix(G) ̸= ∅ and the in-
equality H(F(x),G(x))≤ η holds for all x ∈ X and some η > 0, there is
u∗ ∈ Fix(G) such that

d(x∗,u∗)≤ (1+ k)q
1− k

η,

where 1 < q <
1
2k

;

(iii) the fixed point equation is well-posed, i.e., for every sequence (un)n∈N ⊂ X
such that

D(un,F(un))−→ 0,

as n −→ ∞, we have that un −→ x∗, as n −→ ∞.
(iv) if q < 1

2 , then the fixed point equation has the Ostrowski stability property,
i.e., for any sequence (un)n∈N ⊂ X with D(un+1,F(un))−→ 0 as n −→ ∞, we
have that un −→ x∗;

Proof. In order to prove (i), let x0 ∈ X and we construct the sequence (xn)n∈N of
Picard type starting from x0 := x having the general term xn ∈ F(xn−1),n ∈ N∗. We
prove that this sequence is Cauchy.

Let x1 ∈ F(x0) and 1 < q < 1
2k . Then, there exists x2 ∈ F(x1) such that d(x1,x2)≤

qH(F(x0),F(x1)). Then, we have:

d(x1,x2)≤ qk ·max{d(x0,x1),D(x0,F(x0),D(x1,F(x1)),

D(x0,F(x1)),D(x1,F(x0))}
≤ qk ·max{d(x0,x1),d(x1,x2),D(x0,F(x1))}
≤ qk ·max{d(x0,x1),d(x1,x2),d(x0,x2))}
≤ qk ·max{d(x0,x1),d(x1,x2),d(x0,x1)+d(x1,x2)}
≤ qk(d(x0,x1)+d(x1,x2)).
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Hence,

d(x1,x2)≤
qk

1−qk
d(x0,x1).

We denote β :=
qk

1−qk
< 1. Then d(x1,x2)≤ βd(x0,x1). Using mathematical induc-

tion we get that:
d(xn,xn+1)≤ β

nd(x0,x1).

and

d(xm,xm+n)≤ d(xm,xm+1)+ · · ·+d(xm+n+1,xm+n)

≤ β
md(x0,x1)+ · · ·+β

m+n+1d(x0,x1) = β
m 1−βn

1−β
d(x0,x1).

It follows that

d(xm,xm+n)≤
βm

1−β
d(x0,x1).

Due to the fact that the series ∑β
m is convergent, we get the sequence (xn)n∈N is

Cauchy. Since (X ,d) is a complete metric space, the sequence (xn)n∈N is convergent
to an element x∗ ∈ X . We show first that x∗ ∈ Fix(F). Indeed, we have

0 ≤ D(x∗,F(x∗))≤ d(x∗,xn+1)+D(xn+1,F(x∗))

≤ d(x∗,xn+1)+H(F(xn),F(x∗))

≤ d(x∗,xn+1)+ k ·max{d(xn,x∗),D(xn,F(xn),D(x∗,F(x∗)),

D(xn,F(x∗)),D(x∗,F(xn))}
≤ d(x∗,xn+1)+ k ·max{d(xn,x∗),d(xn,xn+1),D(x∗,F(x∗)),

D(xn,F(x∗)),d(x∗,xn+1)} .

In the above inequality if we let n −→ ∞, then we get that

0 ≤ D(x∗,F(x∗))≤ kD(x∗,F(x∗)).

Thus D(x∗,F(x∗)) = 0 and so x∗ ∈ Fix(F).
For proving (ii), let x∗ ∈ Fix(F) and 1 < q < 1

2k . Then, there exists u∗ ∈ G(u∗)
such that

d(x∗,u∗)≤ qH(F(x∗),G(u∗))

≤ qH(F(x∗),F(u∗))+qη

≤ qk ·max{d(x∗,u∗),D(u∗,F(u∗)),D(x∗,F(u∗)),D(u∗,F(x∗))}+qη

≤ qk ·max{d(x∗,u∗),D(u∗,G(u∗))+η,D(x∗,G(u∗))+η}+qη

≤ qk ·max{d(x∗,u∗),η,d(x∗,u∗)+η}+qη

≤ qk(d(x∗,u∗)+η)+qη,
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thus we obtain

d(x∗,u∗)≤ (1+ k)q
1− kq

η.

Thus, the fixed point equation with a multi-valued Ćirić type operator has the data
dependence property.

Concerning conclusion (iii), in order to prove that the fixed point equation for F
is well-posed, we take the sequence (un)n∈N ⊂ X such that D(un,F(un)) −→ 0, as
n −→ ∞. Then, we have d(un,x∗) ≤ D(un,F(un))+H(F(un),F(x∗)). Furthermore,
we can write:

d(un,x∗)≤ D(un,F(un))+ k ·max{d(un,x∗),D(un,F(un)),D(x∗,F(x∗)),

D(x∗,F(un)),D(un,F(x∗))}
≤ D(un,F(un))+ k ·max{d(un,x∗),d(un,x∗)+D(x∗,F(un)),

D(x∗,F(un)),D(un,F(x∗))}
≤ D(un,F(un))+ k(d(un,x∗)+D(x∗,F(un)))

≤ D(un,F(un))+ k(2d(un,x∗)+D(un,F(un))),

implying

d(un,x∗)≤
1+ k

1−2k
D(un,F(un))−→ 0,n −→ ∞.

Regarding (iv), we will show that the operator F: X → P(X) has the Ostrowski
property. Let us take the sequence (un)n∈N ⊂ X such that

d(un+1,x∗)≤ D(un+1,F(un))+D(F(un),x∗). (3.1)

We take separately D(F(un),x∗) from the above inequality and we have that

D(F(un),x∗) = H(F(un),F(x∗))≤ k ·max{d(un,x∗),D(un,F(un)),D(x∗,F(x∗)),

D(x∗,F(un)),D(un,F(x∗))}
≤ k(d(un,x∗)+D(x∗,F(un))).

Thus D(F(un),x∗)≤ k
1−k d(un,x∗) and denote α := k

1−k < 1. We replace this result in
the relation (3.1) and it follows that

d(un+1,x∗)≤ D(un+1,F(un))+αd(un,x∗)

≤ D(un+1,F(un))+αD(un,F(un−1))+α
2d(un−1,x∗)

≤ ·· · ≤ D(un+1,F(un))+αD(un,F(un−1))+α
2d(un−1,x∗)+ · · ·

+α
nD(u1,F(u0))+α

n+1d(u0,x∗)

=
n

∑
k=0

α
n−kD(uk+1,F(uk))+α

n+1d(u0,x∗)



902 M. MOGA AND R. TRUŞCĂ

Since α < 1, using Cauchy’s lemma (see 1), we get d(un+1,x∗)−→ 0. □

We will now give a theorem that shows that, under an additional condition, the
fixed point set and the strict fixed point set of a multi-valued Ćirić type operator
coincide.

Theorem 6. Let (X ,d) be a complete metric space. Let F: X → Pcl(X) be a multi-
valued Ćirić type operator with constant k < 1. Suppose that SFix(F) ̸= ∅. Then
Fix(F) = SFix(F) = {x∗}.

Proof. We will prove that F has a unique fixed point in X . Since SFix(F) ̸=∅ we
know that there exists x∗ ∈ X such that F(x∗) = {x∗}. We suppose that there exists
z ∈ Fix(F) such that z ̸= x∗. We have

d(x∗,z)≤ H(F(x∗),F(z))

≤ k max{d(z,x∗),D(z,F(z)),D(x∗,F(x∗)),D(x∗,F(z)),D(z,F(x∗))}
≤ kd(z,x∗).

This is a contradiction for k < 1. Therefore SFix(F) = Fix(F) = {x∗}. □

Now we will prove a local fixed point theorem.

Theorem 7. Let (X ,d) be a complete metric space, x0 ∈ X and r > 0. We consider

the multi-valued operator F: B̃(x0;r)→Pcl(X) such that there exists k ∈
(

0,
1
2

)
with

H(F(x),F(y))≤ k max{d(x,y),D(x,F(x)),D(y,F(y)),D(x,F(y)),

D(y,F(x))} , for all x,y ∈ B̃(x0;r).

We also suppose that

D(x0,F(x0))<
1−2k
1− k

r.

Then, there exists a sequence (xn)n∈N of Picard iterates starting from x0 which con-
verges to a fixed point of F.

Proof. Since D(x0,F(x0))<
1−2k
1−k r we get there exists x1 ∈ F(x0) such that

d(x0,x1)<
1−2k
1− k

r.

Moreover,

H(F(x0),F(x1))≤ k max{d(x0,x1),D(x0,F(x0)),D(x1,F(x1)),D(x0,F(x1)),

D(x1,F(x0))}
= k max{d(x0,x1),D(x0,F(x0)),D(x1,F(x1)),D(x0,F(x1))}
≤ k max{d(x0,x1),D(x1,F(x1)),d(x0,x1)+D(x1,F(x1)))}
≤ k max{d(x0,x1),H(F(x0),F(x1)),d(x0,x1)+H(F(x0),F(x1))}
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= k max(d(x0,x1)+H(F(x0),F(x1))) ,

and thus

H(F(x0),F(x1))≤
k

1− k
d(x0,x1)<

k
1− k

1−2k
1− k

r.

We will now denote h :=
k

1− k
, which immediately implies

1−2k
1− k

= 1−h, with

h ∈ (0,1). Hence,
H(F(x0),F(x1))< h(1−h)r.

Thus, there exists x2 ∈ F(x1) such that d(x1,x2)< h(1−h)r. We assume

p(n) : there exists xn ∈ F(xn−1) such that d(xn−1,xn)< hn−1(1−h)r,

and compute

H(F(xn−1),F(xn))≤ k max{d(xn−1,xn),D(xn−1,F(xn−1)),D(xn,F(xn)),

D(xn−1,F(xn)),D(xn,F(xn−1))}
≤ k max{d(xn−1,xn),D(xn,F(xn)),D(xn−1,F(xn))}
≤ k max{d(xn−1,xn),D(xn,F(xn)),d(xn−1,xn)+D(xn,F(xn))}
≤ k(d(xn−1,xn)+H(F(xn−1),F(xn))),

which implies

H(F(xn−1),F(xn))≤ hd(xn−1,xn)< hn(1−h)r.

Using the latter inequality, we get the existence of a point xn+1 ∈ F(xn) such that
the relation p(n+1) holds, and therefore we proved p(n) by mathematical induction.
Again, by means of mathematical induction, one can easily prove the assumption

t(n) : d(x0,xn)< (1−hn)r,

which shows that all the elements of the sequence (xn)n∈N are in the closed ball
B̃(x0;r). Due to the following inequality

d(xm,xm+n)≤ d(xm,xm+1)+ · · ·+d(xm+n−1,xm+n)

≤ hm(1−h)(1+ · · ·+hn−1)r ≤ hm(1−h)
1−hn

1−h
r ≤ hmr,

the sequence (xn)n∈N ⊂ B(x0;s) is Cauchy, thus convergent to a point x∗ ∈ B̃(x0;r).
We finish the proof with showing x∗ ∈ Fix(F), for which we compute

D(x∗,F(x∗))≤ d(x∗,xn+1)+H(F(xn),F(x∗))

≤ d(x∗,xn+1)+ k max{d(xn,x∗),D(xn,F(xn)),D(x∗,F(x∗)),

D(xn,F(x∗)),D(x∗,F(xn))}
≤ d(x∗,xn+1)+ k max{d(xn,x∗)+D(xn,F(xn)),

d(xn,x∗)+D(x∗,F(x∗))}
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≤ d(x∗,xn+1)+ kd(xn,x∗)+ kd(xn,xn+1)+ kD(x∗,F(x∗)).

By considering n −→ ∞, we get the desired conclusion. □

By the above proof, we immediately get the following result.

Theorem 8. Let (X ,d) be a complete metric space, x0 ∈ X and r > 0. We consider

the multi-valued operator F: B(x0;r)→Pcl(X) such that there exists k ∈
(

0,
1
2

)
with

H(F(x),F(y))≤ k max{d(x,y),D(x,F(x)),D(y,F(y)),D(x,F(y)),

D(y,F(x))} , for all x,y ∈ B(x0;r).

We also suppose that

D(x0,F(x0))<
1−2k
1− k

r.

Then, there exists a sequence (xn)n∈N of Picard iterates starting from x0 which con-
verges to a fixed point of F.

Proof. Let s ∈ (0,r) such that

D(x0,F(x0))<
1−2k
1− k

s <
1−2k
1− k

r.

For our conclusion, we follow the approach given in the above proof for the operator
F: B̃(x0,s)→ P(X). □

Remark 1. It is an open question to obtain, by the above approach, a local fixed
point theorem and related stability results for a multi-valued Ćirić type operators with
constant k ∈ (0,1). For a different approach and a general existence result, see [7].

We now introduce the notion of a family of multi-valued Ćirić type operators with
constant k ∈ (0,1).

Definition 6. Let (X ,d) be a metric space. Then, the family (Ft)t∈[0,1] (where
Ft : Y ⊆ X → P(X), for each t ∈ [0,1]) is a family of multi-valued Ćirić type operators
with constant k if k ∈ (0,1) and the following conditions are satisfied:

(i)

H(Ft(x1),Ft(x2))≤ k max{d(x1,x2),D(x1,Ft(x1)),D(x2,Ft(x2)),D(x1,Ft(x2)),

D(x2,Ft(x1))} , for all x1,x2 ∈ Y, t ∈ [0,1].

(ii) H(Ft(x),Fs(x))≤ |φ(t)−φ(s)| , for all t,s ∈ [0,1] and x ∈ Y,
where φ : [0,1]→ R is strictly increasing and continuous.

Using the previous definitions, we can state, as an application of the multi-valued
local fixed point theorem, a homotopy principle for multi-valued Ćirić type operators.
The result generalizes a similar theorem given for multi-valued contraction, given by
Frigon and Granas, see [5].
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Theorem 9. Let (X ,d) be a complete metric space, U ⊂ X be an open set and
F: [0,1]×U → Pcl(X) be a multi-valued operator with closed graph. We denote
Ft := F(t, ·), for t ∈ [0,1]. We suppose:

(i) (Ft)t∈[0,1] is a family of multi-valued Ćirić type operators with a constant
k ∈
(
0, 1

2

)
;

(ii) x /∈ Ft(x). for all (t,x) ∈ [0,1]×∂U.
Then F0 has a fixed point if and only if F1 has a fixed point.

Proof. Let x∗ ∈U such that x∗ ∈ F0(x∗). We define the set

Q = {(t,x) ∈ [0,1]×U : x ∈ Fix(Ft)} .

We observe that Q is nonempty, since (0,x∗) ∈ Q. Next, we consider the following
partial order relation on Q

(t,x)≤ (s,y) if and only if t ≤ s and d(x,y)≤ 2(1− k)(φ(s)−φ(t))
1−2k

,

where φ is the function associated to the family (Ft)t∈[0,1] of multi-valued Ćirić type
operators with constant k ∈ (0,1). We will use for Q the Kuratowski-Zorn Lemma
(saying that if a partially ordered set Q has the property that every chain P in Q has
an upper bound in Q, then the set Q contains at least one maximal element.)

We consider P ⊂ Q a totally ordered subset (a chain in Q) and define

t∗ = sup{t : (t,x) ∈ P} .

We also consider a sequence {(tn,xn)} in P such that

(tn,xn)≤ (tn+1,xn+1) and tn −→ t∗.

Then, taking into consideration the partial order relation on Q, we obtain that

d(xm,xn)≤
2(1− k)(φ(tm)−φ(tn))

1−2k
, for all m > n.

As a consequence, the sequence (xn) is Cauchy, therefore it converges to an ele-
ment x∗ ∈U . Since F has closed graph, and it is fixed point free on the boundary of
U , we get that (t∗,x∗) ∈ Q. Moreover, we have (t,x) ≤ (t∗,x∗) for every (t,x) ∈ P,
proving that (t∗,x∗) is an upper bound of P. Due to the Kuratowski-Zorn lemma, Q
admits a maximal element (t0,x0) ∈ Q. Thus, x0 is a fixed point of Ft0(x0).

We will show now, by contradiction, that t0 = 1. We assume that t0 ̸= 1. Hence,
there exist t1 ∈ (t0,1] and r > 0 such that

0 <
(1− k)(φ(t1)−φ(t0))

1−2k
< r

and B(x0;r)⊂U . We also have the following inequality

D(x0,Ft1(x0))≤ D(x0,Ft0(x0))+H(Ft0(x0),Ft1(x0))≤ |φ(t1)−φ(t0)|.
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This implies

D(x0,Ft1(x0))<
1−2k
1− k

r.

Using the local fixed point theorem for multi-valued Ćirić type operators, we obtain
that there exists a fixed point x1 of Ft1 such that d(x0,x1)≤ r. Hence, (t1,x1) belongs
to Q and (t0,x0)< (t1,x1), which contradicts the maximality of (t0,x0).

Conversely, if F(1, ·) has a fixed point, then taking t := 1− t in the previous ap-
proach, we get that F(0, ·) has a fixed point. The proof is complete. □
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