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Abstract. In this study, we introduce a generalization of P-function, called (M, P)-functions, via
weighted mean functions given by Iscan. Then, we prove some new inequalities for (M, P)-
functions. Also, we give new properties for (M, P)-functions and present some results for the
special cases of M.

2010 Mathematics Subject Classification: 26A51; 26D10; 26E60

Keywords: (M, P)-functions, MN-convex functions, means, weighted means, integral inequalit-
ies

1. INTRODUCTION

Historically, pedagogically and logically, the study of convex functions begins in
the context of real-valued functions of real variable. Convex functions have import-
ant applications and at same time they give rise to a variety of generalizations. The
geometric definition of a convex function specifies the following. A real-valued func-
tion is said to be convex if the line segment connecting two points of its graph lies
above the graph. Equivalently, a real-valued function is convex if its epigraph (the set
of points on or above its graph) is convex. A convex function f: [a,b] CR — R is
bounded and its restriction to (a,b) is continuous. Simple examples of convex func-
tions are f(x) = x*> on (—oo,0), g(x) = sinx on [~T,0], k(x) = |x| on (—oo,0). The
analytic definition of a convex function is as follows.

Definition 1. The function f: [a,b] C R — R, is said to be convex if the following
inequality holds

fOx+(1=0)y) SAf(x)+ (1 =2 f(y) (L.1)
forall x,y € [a,b] and A € [0, 1]. We say that f is concave if (—f) is convex.
Definition 2 ([5]). A function f: I C R — R is P function or that f belongs to

the class of P(I), if it is nonnegative and, for all x,y € I and A € [0, 1], satisfies the
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following inequality;
fat (1=R)y) < fx)+f)- (1.2)

Convex functions play an important role in many areas of mathematics. They are
especially important in the study of optimization problems where they are distin-
guished by a number of convenient properties. The generalized condition of convex-
ity, i.e. MN-convexity with respect to arbitrary means M and N, was proposed in
1933 by Aumann [4]. Recently many authors have dealt with these generalizations.
In particular, Niculescu [14] compared MN-convexity with relative convexity. In [3],
Anderson et al. studied certain generalizations of these notions for a positive-valued
function of a positive variable as follows:

Definition 3. A function M: (0,e0) X (0,00) — (0,0) is called a mean function if
the following conditions are satisfied.
M1) M(u,v) =M(v,u),
(M2) M(u,u) =u,
(M3) u < M(u,v) < v whenever u < v,
(M4) M(Au,\v) = AM (u,v) for all A > 0.

Example 1. For u,v € (0,00)

u+v

M(u,v) =A(u,v) =A = 5

is the Arithmetic Mean,
M(u,v) = G(u,v) = G =+/uy
is the Geometric Mean,

_ 2uy
- u+v

Muv)=Hu,y)=H=A""u"'v"

is the Harmonic Mean,

u—v
M(M7V) :L(M,V) =L = { Inu—Inv M;év
u u=1vy

is the Logarithmic Mean,
1 =
M(u,v):I(u,v):I:{ ¢ (%) uv

is the Identric Mean,

1 _ (ww\1/P
M(u,v) = My(u,v) =M, = 4 PP Py = (52) " p e R\{0}
Glu,v) = /v p=0
is the p-Power Mean, In particular, we have the following inequality
M_1=H<My=G<LLI<A=M,.
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In [3], Anderson et al. gave a new definition of MN-convex functions called MN-
midpoint convex with the help of M and N weighted mean as follows.

Definition 4. Let M and N be two means defined on the intervals I C (0,) and
J C (0,0) respectively, a function f: I — J is called MN-midpoint convex if it satis-
fies
f(M(u,v)) <N (f(u),f(v))

for all u,v € I.

In [9], Iscan gave a new definition of function called weighted mean function as
follows.

Definition 5. A function M: (0,00) x (0,00) x [0, 1] — (0,00) is called a weighted
mean function if
(WM1) M(u,v,A) =M(v,u,1 —1).

(WM2) M(u,u,\) = u.

(WM3) u < M(u,v,\) <vwheneveru <vandAe (0,1). Also {M(u,v,0),M(u,v,1)}
={u,v}.

(WM4) M (0w, 0w, A) = oM (u,v,A) for all o > 0.

(WMS5) Let A € [0,1] be fixed. Then M(u,v,A) < M(w,v,A) whenever u < w and
M(u,v,\) < M(u,,A) whenever v < .

(WM6) Letu,v € (0,00) be fixed and u # v. Then M (u,v,.) is a strictly monotone and
continuous function on [0, 1].

(WM7) M (M(u,v,\),M(z,w,N),s) = M (M(u,z,s),M(v,w,s),\) for all u,v,z,w €
(0,00) and s,A € [0, 1].

(WMB8) M(u,v,sAi + (1 —s)Ap) = M (M (u,v,\),M(u,v,\y),s) for all u,v € (0,0)
and s,A1,A2 € [0, 1].

Remark 1 ([9]). According to the above definition every weighted mean function
is a mean function with A = 1/2. Also, By (WM6) we can say that for each x €
[u,v] C (0,00) there exists a A € [0, 1] such that x = M(u,v,\). Morever;

i) If M(u,v,.) is a strictly increasing, then M(u,v,0) = u and M(u,v,1) =v
whenever u < v (i.e. M(u,v,\) is in the positive direction)

i) If M(u,v,.) is a strictly deccreasing, then M (u,v,0) = v and M(u,v,1) = u
whenever u < v (i.e. M(u,v,A) is in the negative direction) and
M (u,v,.)([0,1]) = [min {u, v}, max {u,v}].

Throughout this paper, we will assume that different weighted means have the
same direction unless otherwise stated.

Example 2 ([9)).

M(u,v,A) =A(u,v,A) =A) = (1 =ANu+Av
is the Weighted Arithmetic Mean,
M(u,v,\) = G(u,»,\) = Gy, = u' M
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is the Weighted Geometric Mean,

uy

M(M,V77\«) :H(l/hV;?\') = H}\{ :Ail(u717vil77\t) e m
U — Vv

is the Weighted Harmonic Mean,

M(uvv7}\‘) :MP(M>V7>“) :Mp,l =

{ AP P v 0) = (1=Ma? + %) /P p e R\ {0}
G(u,v,\) =yl M p=0

is the p-Power Mean. In particular, we have the following inequality
M_yp=Hy <My =Gy <M =Ay<Mp)
forall x,y € (0,00),7 € [0,1] and p > 1.
Iscan [9] proved the equalities in the following proposition.

Proposition 1. IfM: (0,0) x (0,e0) x [0,1] — (0,00) is a weighted mean function,
then the following identities hold:

M (M (a7M(a7b’ s)’ }\‘) 7M(b’M(a7b’ s)’ }\‘) 7s) = M(a? b’ s)’ (1'3)
M (M(a,b,\),M(b,a,\),1/2) = M(a,b,1/2). (1.4)

Many different definitions of convexity have been made by mathematicians until
now. One of these definition was given by Iscan as follows.

Definition 6 ([9]). Let M and N be two weighted means defined on the intervals
I C (0,00) and J C (0,00) respectively, a function f: I — J is called MN-convex
(concave) if it satisfies

fM(u,v, M) < (Z)N(f(u), f(v),A)
forall u,ve€Iand A € [0,1].

We note that by considering the special cases of M and N, we obtain several dif-
ferent results. For some recent results related to convex functions, MN-convexity and
some kinds of convexity obtained by using weighted means, see [1,4,6,7,11-14,16].

Definition 7 ([9]). Let M and N be two weighted means defined on the intervals
[u,v] C (0,00) and J C (0,00) respectively and f: [u,v] — J be a function. We say
that f is symmetric with respect to M(u,v,1/2), if it satisfies

f(M(u,v,k)) :f(M(u7v71 _}"»
forall A € [0,1].
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Definition 8 ([10]). A function f defined on [a, b] is said to be of bounded variation
on [a, b] if its total variation Var(f) on [a,b] is finite, where

Var(f)=sup Y_ |f(t;) — f(tj-1)], (1.5)
j=1

the supremum being taken over all partitions
a=th<h<..<t,=b (1.6)

of the interval [a,b]; here, n € N is arbitrary and so is the choice of values 71, ...,%,—;
in [a,b] which, however, must satisfy (1.6).

Obviously, all functions of bounded variation on [a,b] form a vector space. A
norm on this space is given by

If Il = [f (@)l + Var(f). (L.7)

The normed space thus defined is denoted by BV [a, D], where BV suggest “bounded
variation”.

In 1905, E. Almansi [2] proved the following theorem.

Theorem 1. Ler f and f' be continuous functions on the interval (a,b) and let
fla) = f(b) and [ f(x)dx = 0. Then

/a b [f(x)]dx < (bz_ “)2 / b[f’(x)Fdx- (1.8)

T

The aim of this paper is to give a new definition called (M, P)-function of P-
functions that belongs to the class of P(I) via the weighted means, obtain new in-
equalities using (M, P)-functions and present some properties of (M, P)-functions.

2. MAIN RESULTS

Definition 9. Let / C (0,o0) be an interval, let M: I x I x [0,1] — (0,e) be a
weighted mean function and let f: I — R be a function. Then f is said to be an
(M, P)-function if the inequality

fF(M(x,y,1)) < fx)+ f ()
holds for all x,y € I and 7 € [0, 1].

Remark 2. If we choose M as the weighted arithmetic mean in Definition 9, we
obtain the class of P-function.

Remark 3. If f: I — R is an (M, P)-function on I,
f(x)>0 Vvxel

Theorem 2. Every MN-convex function is an (M, P)-function.
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Proof. Let M: I x1x[0,1] — (0,00), N : J xJ x [0,1] — (0,00) be two weighted
mean functions on intervals J C (0,00), I C (0,00) respectively and f: I — J be a
MN-convex function. Then we can write

F(M(x,,1)) <N (f(x),f(y),1) (2.1)

forall x,y € I and all ¢ € [0, 1].
On the other hand, we can write

f&x) < fx)+f(y)
and

) < f)+ 7).

Then, we obtain,

N(f(x), f),1) SN(f()+FO), f(x)+fO)ot) = fF() +f). (22
So, using (2.1) and (2.2), the proof is completed. ]

Theorem 3 (Hermite-Hadamard’s inequalities for (M, P)-functions). Let M be a
weighted mean function defined on the interval I C (0,00) and f: [ — J is an (M, P)-
function. If the following integral exists, then we have the following inequalities for
(M, P)-functions

1
00x31/2)) <2 [ (MGepn)de AW +F0) @3
forall x,y € I with x < y.

Proof. Since f is (M, P)-function, using (WMI1) and (1.4) equality, we have

F(M(x,,1/2)) = f(M(M(x,y,t),M(x v,1—1), 1/2)) (2.4)
< f(M(x,y,1)) + f(M(x,y,1—1))

for all # € [0, 1]. Integrating both sides of (2.4) inequality respect to ¢ over [0,1], we
obtain

/O l f(M(x,y,1/2))dt = f(M(x,y,1/2)) (2.5)
/f( (x,y,1 dt+/ M(x,y,1 ))dt

—2/ M(x,y,1)

F(M(x,3,1)) < f(x)+ £() (2.6)

Otherwise, we can write
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for all # € [0, 1]. Integrating both sides of (2.6) inequality respect to ¢ over [0,1], we
obtain

1
| teya)ar < 10 +50) @)
Then, using (2.5) and (2.7) inequalities, we get the desired result. ]

Remark 4. Let I C (0,00) and f: I — R. If f is an (M, P)-function and M = A
(A is the weighted arithmetic mean), then using (2.3), we have the following Hermite-
Hadamard’s inequalities (see [5], Theorem 3.1).

f@@yjﬂﬁzf(i?)ﬁZJf@&mﬂwt

<2[f() + )]

Remark 5. Let I C (0,00) and f: I — R. If f is an (M, P)-function and M = G
(G is the weighted geometric mean), then using (2.3), we have the following Hermite-
Hadamard’s inequalities (see [15], Theorem 2.2, Corollary 2.2, for h(t)=1).

f(G(x,y,l/Z)) = ) < 2/ G(x,y,t)

_ Y f(u)
lny—lnx/x u du
<2[f(x) +f )]

Remark 6. Let I C (0,00) and f: I — R. If f is an (M, P)-function and M = H
(H is the weighted harmonic mean), then using (2.3), we have the following Hermite-
Hadamard’s inequalities (see [8], Theorem 4).

PlHee1/2) =7 (22 ) <2 [ et

_2/ <tx+ 1—t)y>dt

_ 2y )

y—xJy u?
<2[f () +f)]-
Theorem 4. If f: [a,b] C (0,00) — R is an (M, P)-function, fis bounded on [a,b].
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Proof. Since f is an (M, P)-function, f(x) > 0 respect to Remark 3 for all x € [a, b].
Then, f is a function bounded below. Also, we can write x = M (a, b, t) for Vx € [a, b]
and 37 € [0, 1]. Then, we get

f(x)=f(M(a,b,1)) < fa)+ f(b) =k
and f is a function bounded above. Consequently, f is a bounded function. O

Theorem 5. Let M be weighted mean defined on the interval I C (0,00). If f:
I — Ris an (M, P)-function and o. > 0, then o.f is an (M, P)-function.

Proof. Since f is an (M, P)-function, we have
af (M(x,y,1)) < a(f(x)+£())
= of (x) + otf (y)-
This shows that of is an (M, P)-function. So, the proof of theorem is completed. [

Theorem 6. Let M be weighted mean function defined on the interval I C (0,00).
If fo.: I — R be an arbitrary family of (M, P)-functions and let f(x) = supg, fo(x). If
K={u€l: f(u) <oo} is nonempty, then K is an interval and f is an (M, P)-function
on K.

Proof. Lett € [0,1] and x,y € K be arbitrary. Also, since fy is an (M, P)-function,
fo 1s bounded. Then

F(M(x,y,1)) = supgfo(M(x,y,1))
< supg (fa(x) + fa(y))
< supy fa(x) +supg fa(y)
=fx)+f()
< oo,

This shows simultaneously that K is an interval, since it contains every point between
any two of its points and that f is an (M, P)-function on K. The proof of the theorem
is completed. O

Theorem 7. Let M be weighted mean function defined on the interval [x,y] C
(0,00). If function f: [x,y]| = R is an (M, P)-function and symmetric with respect to
M(x,y,1/2), then we have

F(M(x.y,1/2)) <2f () <2[f(x) + £ ()] 2.8)
forallu € [x,y).

Proof. Let u € [x,y] be arbitrary point. Then there exist a ¢ € [0, 1] such that u =
M(x,y,t). Since f: [x,y] — J is an (M, P)-function and symmetric with respect to
M(x,y,1/2), by using equality (1.4) we have

F(M(x,,1/2)) = f(M(M(x,y,t),M(x,y, 1-1),1 /2))
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< fF(M(x,y.0) + f (M(x,y.1 1))
:f(M(xvyat)) +f(M(x7y7 ))
=2f(u).

Thus, we obtain the left-hand side of inequality (2.8). Secondly, since f is an (M, P)-
function and (WM5) with (1.4), we get

2f(u) = f(M(x,y,0)) + f (M(x,,1))
SFE)+FO) )+ f0)
=2f(x)+2f(y)
=2[f(x)+ )]

So, the proof of the theorem is completed. O

Theorem 8. Let M be weighted mean function defined on the interval [ C (0,0). If
the functions f,g: — R are (M, P)-functions, then f + g is also an (M, P)-function.

Proof. Since f and g are (M, P)-functions, we have

f(M(x,y,0)) < f(x)+f(3)
and
g(M(x,y,1)) < g(x)+g(y)
for all x,y € I'and ¢ € [0, 1]. Then we can write
(f+8)(M(x,y.1)) = f(M(x,y.1)) +8(M(x, .t
<)+ ) +8x) +8(y)
=f(x)+g(x)+ /() +e0)
=+ +(f+8) )

So, this completes the proof. O

))

Theorem 9. Let 0 < a < b and M: [a,b] X [a,b] x [0,1] — (0,00) be a weighted
mean function defined on |a,b), f: [a,b] — (0,00), f and f' be continuous functions
on (a,b) with f(a) = f(b) and folf(M(a,b,t))dt =0. If |f'| is an (M, P)-function
on |a,b|, then the following inequality holds

/ / 2
/f ))dt < /(@)1 + 17" (5)1] /Ol(m’(r))zdt,

4m?

where ¢(t) = M(a,b,t), Vt € [0,1].

Proof. Let @(t) = M(a,b,t) and h(t) = fo@(t). Since @ is strictly monotone,
¢ € BV|[0,1], then ¢/ € L[0,1]. Also, we can write (0) = a, ¢(1) = b and therefore
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1n(0) = f(M(a,b,0)) = f(a) = f(b) = f(M(a,b,1)) = h(1). Also, since [, fi(t)dt =
fol f(M(a,b,1))dr =0, @ satisfies the hypothesis of Theorem 1. So that, we can write

/ R (1 dt<— (ﬁ’(t))zdt. 2.9)

Then, we have,

e [ ) ar- 4;2 [ 17 (oe)e/)a
= /0 £ (9() P (9/(0)) dr.

Since |f| is (M, P)-function on [a,b], we get

| ) a 41/ F@l+F O @) e @)

472 Jo
_ I @l+1f® )] 2
PO [ wyan
Using (2.9) and (2.10), we get the desired result. O

Corollary 1. If we take M = A (A is the weighted arithmetic mean) in Theorem 9,
we get

b —a 3
/a f2(x)dx§ (b4n2) Uf/(a)‘"Hf/(b)Hz-

Corollary 2. If we take M = G (G is the weighted geometric mean) in Theorem 9,
we get

b £2(x) [Inb —Ina)?(b? — a?) 2

dx < = [ @]+ 17 )]

Corollary 3. If we take M = H (H is the weighted harmonic mean) in Theorem 9,

we get
b £2(x S —a®)(b—a)?
[ O a1

Theorem 10. Let 0 < a < b and M: [a,b] X [a,b] x [0,1] — (0,0) be a weighted
mean function defined on |a,b), f: [a,b] = (0,00), f and f' be continuous functions
on (a,b) with f(a) = f(b) and folf(M(a,b,t))dt =0. If |f'|9 is an (M, P)-function
on |a,b|, then the following inequality holds

' (M@ n))ar < LSOO q(/\@ Mm>,

0 4m2

where %—I— é,q > 1, ¢(t) =M(a,b,t), Vt € [0,1].
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Proof. Let ¢(t) = M(a,b,t) and h(t) = fo@(t). Since @ is strictly monotone,
¢ € BV|[0, 1], then ¢/ € L[0,1]. Also, we can write ¢(0) = a, ¢(1) = b and therefore

1(0) = f(M(a,b,0)) = f(a) = f(b) = f(M(a,b,1)) = h(1). Also, since [, h(t)dt =
fol f(M(a,b,r))dr =0, @ is satisfies the hypothesis of Theorem 1. So that, we can
write

1 5 1 1 , 2
/O R (t)dt < W/o (K(r)) dt. (2.11)

Using Holder inequality, we have
i [ @ =5 [ (o) g o) a
4n2 Jo 47‘52

= /0 1 (0(0) P |9/ (1) ar

Since |f’|? is (M, P)-function on [a,b], we get

Léz/;(h'a))zdré;z(/ol (17 @+15 e > (/ /(¢ %)

2

_ @+l e) ( / o %). 2.12)

4m?
Using (2.11) and (2.12), we get the desired result. ]

Corollary 4. If we take M = A (A is the weighted arithmetic mean) in Theorem
10, we get

»Q\N

[ Pear< O 1w

4n?

Corollary 5. If we take M = G (G is the weighted geometric mean) in Theorem
10, we get

2
q

/b fz(x)dxS Inb—Ina)*~ (bz"—a2 )

PR [1F @) +1f (®)[7] 7.
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Corollary 6. If we take M = H (H is the weighted harmonic mean) in Theorem
10, we get

[ ) o b= P (@h)(E! ™ —a);
a X 4n2(1—4p)»

ESRLS]

[F (@) +|f ®)I] 7.
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