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Abstract. In this paper, we characterize the bi-f-harmonic curve on surfaces and then we study
the submanifold of a Riemannian manifold using the bi-f-harmonic curve. The conditions for
curvature and torsion of bi-f-harmonic curve on surface, ruled surface and 3-dimensional space
are derived. In addition, the geometry of the submanifold is studied by taking a bi-f-harmonic
curve with immersion from the submanifold to the ambient space. Moreover, the conditions are
given for isotropic submanifolds, totally geodesic submanifolds and umbilical submanifolds, so
that the immersed curve is a bi-f-harmonic curve in ambient space. Finally, we investigate some
important results for a particular case f = 1 of the bi-f-harmonic curve.
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1. INTRODUCTION

Harmonic maps are the generalization of geodesics, minimal surfaces and har-
monic functions. These mappings have important applications and relationships in
different fields of mathematics and physics with nonlinear partial differential equa-
tions and the concept of the stochastic procedure. Let (M1,g1) and (M2,g2) are
Riemannian manifolds, then a harmonic map ϕ : (M2,g2) → (M1,g1) is a critical
point of the energy functional,

E (ϕ) =
1
2

∫
Γ2

|dϕ|2vg2 ,

where Γ2 is some compact domain of M2 and τ(ϕ) = Traceg2 (∇dϕ) is tension field
of ϕ. The harmonic map equation is an Euler-Lagrange equation of the functional
[6] τ(ϕ)≡ Traceg2 (∇dϕ) = 0, where τ(ϕ) = Traceg2(∇dϕ) is a tension field of ϕ. In
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1964, J. Eells and J. H. Sampson [6], generalized the concept of harmonic maps to
bi-harmonic maps. A bi-harmonic map ϕ : (M2,g2)→ (M1,g1) is a critical point of
the bi-energy functional, E2 (ϕ) =

1
2
∫

Γ2
|τ(ϕ) |2vg2 , where Γ2 is a compact domain of

M2. The bi-harmonic map equation is an Euler-Lagrange equation of the functional
[7],

τ2 (ϕ)≡ Traceg2

(
∇

ϕ
∇

ϕ −∇
ϕ

∇M2

)
τ(ϕ)−Traceg2RM1 (dϕ,τ(ϕ))dϕ = 0,

where RM1 =
[
∇

M1
X ,∇M1

Y

]
Z−∇

M1
[X ,Y ]Z, is a curvature operator of (M2,g2). Bi-harmo-

nic submanifold of the Euclidean space was introduced by B. Y. Chen in 1991 [3].
If the inclusion map is bi-harmonic isometric immersion, then a submanifold is a
bi-harmonic submanifold. In [10], the author introduced the f-bi-harmonic maps
by combining the bi-harmonic maps and f-harmonic maps. A f-bi-harmonic map
is a critical point of the bi-f-energy functional, 1

2
∫

Γ2
|τ f (ϕ)|2vg2 . The bi-f-harmonic

equation for curves in Euclidean space, hyperbolic space, sphere and hypersurfaces
of manifolds were considered in [18]. A f-harmonic map ϕ : (M2,g2) → (M1,g1)
is a critical point of the f-energy functional, E f (ϕ) =

1
2
∫

Γ2
f |dϕ|2vg2 , where Γ2 is a

compact domain of M. The f-harmonic map equation is an Euler-Lagrange equation
of the functional [5, 16],

τ f (ϕ)≡ f τ(ϕ)+dϕ(grad( f )) = 0,

where τ(ϕ) = Traceg2 (∇dϕ), is the tension field of ϕ. An f-bi-harmonic map from a
compact Riemannian manifold to a curved manifold with constant f-bienergy density
is a harmonic map [15].

A smooth map f : (Mm1
1 ,g1)→ (Mm2

2 ,g2) is said to be an immersion if the differen-
tial map d fp1 : Tp1M1 → Tf (p1)M2 is one-one for all p1 ∈ M1. The theory of isometric
immersions is one of the active research areas in differential geometry [1, 2, 4]. In
1974, the authors showed that if a circle is mapped by immersion from a submani-
fold to the ambient manifold, then the submanifold is totally umbilical with a parallel
mean curvature vector field [9]. In [8], the author characterizes the helix by a differ-
ential equation and studies the effect on the submanifold by moving a helix from the
submanifold to the ambient manifold by immersion. By using isotropic immersion,
the circles in complex projective space and complex hyperbolic space were studied in
[11, 12, 17]. Recently authors studied the characterization of submanifold by taking
the hyperelastic curves along an immersion [19].

We organize our paper as follows: In section 2, we give some basic and useful
relations. In section 3, we study bi-f-harmonic curves on surfaces. We prove that if
γ(s) is a bi-f-harmonic curve on ruled surface S ⊂ R3 with f = constant ̸= 0, then
γ(s) must be a straight line. Section 4, is divided into two parts; the first part deals
with the characterization of submanifolds by moving the bi-f-harmonic curve from
the submanifold to the ambient space by immersion. Then we show that an isometric
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immersion is a bi-f-harmonic immersion in the case of a totally geodesic submani-
fold. The second part of the section, discusses the characterization of a submanifold
by taking a bi-harmonic map by immersion from the submanifold to the ambient
space.

2. PRELIMINARIES

A bi-f-harmonic map ϕ : (M2,g2)→ (M1,g1) from Riemannian manifold M2 to a
Riemannian manifold M1 is a critical point of the bi-f-energy functional,

E2
f (ϕ) =

1
2

∫
Γ2

|τ f (ϕ)|2vg2 ,

where Γ2 is a compact domain of M2. The bi-f-harmonic map equation is an Euler-
Lagrange equation of the functional,

τ
2
f (ϕ)≡ f Jϕ (τ f (ϕ))−∇

ϕ

grad(ϕ)τ f (ϕ) = 0,

where τ f (ϕ) is the f-tension field of ϕ and Jϕ is the Jacobi operator of the map defined

by Jϕ(X) =−
[
Trg2∇ϕ∇ϕX −∇

ϕ

∇M1
X −RM2(dϕ,X)dϕ

]
[15, 16].

Let φ : I → M1 be a curve in (M1,g1), then φ is a bi-f-harmonic curve on M1 if and
only if the following condition holds [18](

f f ′′′+ f ′ f ′′
)

T1 +
(
3 f f ′′+2 f ′2

)
∇

1
T1

T1 +4 f f ′∇1,2
T1

T1

+ f 2
∇

1,3
T1

T1 + f 2R1 (
∇

1
T1

T1,T1
)

T1 = 0, (2.1)

where f : I → (0,∞) is a smooth function, ∇
1,2
T1

T1 =∇1
T1

∇1
T1

T1 , ∇
1,3
T1

T1 =∇1
T1

∇1
T1

∇1
T1

T1.

and R1 is a Riemann curvature tensor of M1.
Let M be a Riemannian manifold of dimension m and M1 is its submanifold of

dimension m1 with Riemannian connection ∇ on M and induced Riemannian con-
nection ∇1 on M1. The set of all vector fields on M and M1, are represented as
Γ(T M) and Γ(T M1), respectively. T M1, Γ(T M1)

⊥ and T M⊥
1 will express the set of

tangent vector bundle of M1, all normal vector fields of M1 and normal vector bundle
of M1, respectively. The Gauss and Weingarten formulae for M and M1, are [20]

∇X1Y1 = ∇
1
X1

Y1 +h1 (X1,Y1) , ∀ X1Y1 ∈ Γ(T M1), (2.2)

∇X1W1 =−AW1X1 +DX1W1, ∀ W1 ∈ Γ(T M1)
⊥ , (2.3)

where D is a connection in normal bundle, h1 (X1,Y1) is second fundamental form of
M1 and A is the shape operator of M1. The tangential component and normal compon-
ent in Gauss formula are ∇1

X1
Y1 and h1(X1,Y1), respectively. Whereas in Weingarten

formula the tangential component and normal component are AW1X1 and DX1W1, re-
spectively. The second fundamental form is bilinear and symmetric in X1 and Y1. The
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relation between shape operator and second fundamental form is given by

⟨AW1X1,Y1⟩= ⟨h1 (X1,Y1) ,W1⟩. (2.4)

If R and R1 are the Riemannian curvature tensor fields of M and M1, then from (2.2)
and (2.3) , we have

R(X1,Y1)Z1 = R1 (X1,Y1)Z1 −Ah1(Y1,Z1)X1 +Ah1(Y1,Z1)Y1

+
(
∇X1h1)(Y1,Z1

)
−
(
∇Y1h1)(X1,Z1) ,

for all X1,Y1,Z1 ∈ ΓT M1. The covariant derivative of second fundamental form and
shape operator are, respectively(

∇X1h1)(Y1,Z1) = DX1h1 (Y1,Z1)−h1 (
∇

1
X1

Y1,Z1
)
−h1 (Y1,∇

1
X1

Z1
)
, (2.5)

and

(∇X1A)W1
Y1 = ∇

1
X1
(AW1Y1)−ADX1W1Y1 −AW1

(
∇

1
X1

Y1
)
. (2.6)

The covariant derivative of h and A, satisfies the relation〈(
∇X1h1)(Y1,Z1) ,W1

〉
=
〈
(∇X1A)W1

Y1,Z1
〉
. (2.7)

The submanifold M1 is totally geodesic in M if its second fundamental form is
identically zero i.e. h1 = 0 (A = 0) and M1 is totally umbilical if h1 satisfies

h1 (X1,Y1) = ⟨X1,Y1⟩H. (2.8)

If, ⟨h1 (X1p,X1p) ,h1 (X1p,X1p)⟩ = constant, ∀ X1p ∈ TpM1, then M1 is said to be
isotropic at p. The necessary and sufficient condition for M1 to be isotropic is that

⟨h1 (X1p,X1p) ,h1 (X1p,Y1p)⟩= 0, ∀ X1p,Y1p ∈ TpM1.

Also, if h1 (X1p,Y1p) = 0, ∀ X1p,Y1p ∈ TpM1, then M1 is totally umbilical [14].

3. CHARACTERIZATION OF BI-F- HARMONIC CURVES

Let γ(s) be a smooth unit speed curve immersed on a surface S, with T = γ′(s) is
the unit tangent vector and N = JT is the unit normal vector along γ(s) [13]. Where
J is the anti-clockwise rotation by an angle π

2 defined in the tangent bundle of S. Let
∇ be the Levi-Civita connection on S, then the Frenet-Serret equation is

∇T T = κgN, (3.1)

where κg is a geodesic curvature.

Theorem 1. A curve γ(s) on a surface S is a bi-f-harmonic curve if and only if its
geodesic curvature satisfies the equations

f f ′′′+ f ′ f ′′−4κ
2
g −3κgκ

′
g f 2 = 0, (3.2)

3κg f f ′′+2κg f ′2 +4κ
′
g f f ′+

(
κ
′′
g −κ

3
g
)

f 2 +κg f 2KS = 0, (3.3)
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where KS = ⟨R(T,N)N,T ⟩ is the Gaussian curvature of surface S along γ and ()′

represents the derivative with respect to parameter s.

Proof. Let γ(s) be a curve on a surface S then from (3.1), we have{
∇2

T T =−κ2
gT +κ′

gN,

∇3
T T =−3κgκ′

gT +
(
κ′′

g −κ3
g
)

N,
(3.4)

where T and N are tangent and normal along γ(s). Substituting equation (3.4) in
(2.1), we get(

f f ′′′+ f ′ f ′′−4κ
2
g f f ′−3κgκ

′
g f 2)T + f 2

κgR(N,T )T

+
(
3κg f f ′′+2κg f ′2 +4κ

′
g f f ′+ f 2

κ
′′
g − f 2

κ
3
g
)

N = 0. (3.5)

Then the inner product of equation (3.5) with tangent and normal provide the re-
quired conditions. □

Let S be a ruled surface in R3 with parametrization x(s, t) = γ(s)+ tN(s), where
N(s) is a normal of curve in R3. Then the Gaussian curvature along γ(s) satisfies
KS (γ(s)) = −τ2(s). Also, the geodesic curvature of γ(s), as a curve on S, is κg =
±κ(s), where κ(s) is a curvature of γ(s) in R3.

Theorem 2. A curve γ(s) is a bi-f-harmonic curve on ruled surface S if and only
if curvature (κ(s)) and torsion (τ(s)) of the curve satisfies the equations

κ(s) = f−
4
3

(
2
3

∫
f

2
3 ( f f ′′′+ f ′ f ′′)ds+C

) 1
2

, (3.6)

τ(s) =
1

3κ2 f 2

[
27κ

4 f 3 f ′′+18κ
4 f 3 f ′2 +3κ

2 ( f 2{ f f ′′′+ f ′ f ′′−4κ
2 f f ′

})′
−
(

f f ′′′+ f ′ f ′′−4κ
2 f f ′

)2
] 1

2

, (3.7)

where C is some constant.

Proof. Let γ(s) be a bi-f-harmonic curve on a ruled surface S. Taking κg = κ and
KS = ⟨R(T,N)N,T ⟩=−τ2 in equation (3.2) and (3.3), we get

f f ′′′+ f ′ f ′′−4κ
2 f f ′−3κκ

′ f 2 = 0, (3.8)

3κ f f ′′+2κ f ′2 +4κ
′ f f ′+

(
κ
′′−κ

3) f 2 −κ f 2
τ

2 = 0. (3.9)

Solution of the equation (3.8), provides the value of the curvature κ(s) (using mapp-
le). Also from equation (3.8), we have

κ
′ =

1
3 f 2κ

( f f ′′′+ f ′ f ′′−4κ
2 f f ′). (3.10)
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The derivative of κ′ from (3.10),

κ
′′ =−κ′2

κ
+

1
3κ

(
1
f 2

(
f f ′′′+ f ′ f ′′−4κ

2 f f ′
))′

.

Substituting the values of κ′ and κ′′ from above equations in (3.9), we get the required
value of torsion τ(s).

Conversely, assume that γ(s) be a curve on a ruled surface S, with curvature and
torsion given by (3.6) and (3.7), respectively. Then it is easy to see that κ and τ

satisfies the equation (3.8) and (3.9), hence γ(s) is a bi-f-harmonic curve on ruled
surface S. □

Corollary 1. If γ(s) is a bi-f-harmonic curve with non zero curvature and f =
constant lying on a ruled surface S in R3, then f must be a zero function (i.e., f = 0).

Proof. Let γ(s) is a bi-f-harmonic curve on ruled surface S with f (s) = constant ̸=
0, then from equation (3.8), we have κ =C, where C is constant.
Since f (s) = constant ̸= 0 and κ =C, therefore from equation (3.9), we have τ = iC,
which is not possible. □

Hence from the above corollary, we can conclude that

Remark 1. If γ(s) is a bi-f-harmonic curve lying on a ruled surface S in R3 with
f = constant ̸= 0 , then γ(s) is a straight line.

Corollary 2. Let γ(s) be a bi-f-harmonic curve lying on a ruled surface S, with
f (s) = κ(s) ̸= 0, then γ(s) is a Frenet helix.

Proof. Since γ(s) is a bi-f-harmonic curve on a ruled surface S with f (s) = κ(s) ̸=
0, therefore from (3.8), we get

κκ
′′′+κ

′
κ
′′−4κ

3
κ
′−3κ

3
κ
′ = 0. (3.11)

On integrating (3.11), we obtain

κκ
′′− 7

4
κ

4 =C1,

where C1 is some constant. Multiplying above equation with 2 κ′

κ
and then integrating,

κ
′2 =

7
8

κ
4 +2C1 logκ+C2,

where C2 is another arbitrary constant, for simplicity taking C1 =C2 = 0, we have

κ =

√
8
7

1
s
.

Substituting the value of f = κ =
√

8
7

1
s in (3.9), we get

τ = 3

√
10
7

1
s
.
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Since the ratio of κ and τ is constant, hence γ is a Frenet helix. □

Theorem 3. Let γ be a bi-f-harmonic curve on a surface S with Gaussian curvature
KS =− 1

9 f 2

(
70 f ′2 +39C

)
and f f ′′ = constant, then γ is a geodesic on S.

Proof. Since γ is a bi-f-harmonic curve and f f ′′ = constant(C), therefore from
(3.2), κ′

g =
4
3

(
κg f ′

f

)
. Further the derivative of κ′

g,

κ
′′
g =

4
3

(
κg f f ′′+κ′

g f f ′−κg f ′2

f 2

)
.

Substituting κ′
g and κ′′

g in (3.3), we have

κg =±
√

39 f f ′′+70 f ′2 +9 f 2KS

3 f
, (3.12)

where KS is a Gaussian curvature. Thus, from (3.12) and KS = − 1
9 f 2

(
70 f ′2 +39C

)
,

we have κg = 0. Hence γ is a geodesics on surface S. □

Let γ(s) be a bi-f-harmonic curve immersed on a Riemannian manifold M3 and
{T (s),N(s),B(s)} is a Frenet frame along γ(s), where γ′(s) = T (s) is a unit tangent
vector field. Then the Frenet equations are

∇T T (s) = κN,

∇T N(s) =−κT + τB,
∇T B(s) =−τN,

(3.13)

where κ = κ(s) and τ = τ(s) are the curvature and the torsion of γ, respectively.
Now, substituting equation (3.13) in equation (2.1) and taking corresponding tangent,
normal and binormal components of the equation (2.1), we obtain

3κ f f ′′+2κ f ′2 +4κ′ f f ′+κ′′ f 2 +κ f 2⟨R(N,T )T,N⟩= κ3 f 2 +κτ2 f 2,

f f ′′′+ f ′ f ′′−4κ2 f f ′−3κκ′ f 2 = 0,
4κτ f f ′+2κ′τ f 2 +κτ′ f 2 +κ f 2⟨R(N,T )T,B⟩= 0.

(3.14)

Theorem 4. If a curve γ(s) in three dimensional Riemannian manifold M3 is a
bi-f-harmonic curve, then the torsion (τ(s)) and curvature (κ(s)) of γ(s), are

τ(s) =
1

3κ2 f 2

(
−9κ

6 f 4 +
(
27 f 3 f ′′+36 f 2 f ′2 +9 f 4KS

)
κ

4 (3.15)

+3κ
2 ( f 2{ f f ′′′+ f ′ f ′′−4κ

2 f f ′
})′− ( f f ′′′+ f ′ f ′′−4κ

2 f f ′)2
) 1

2

,

κ(s) = f−
4
3

(
2
3

∫
f

2
3
(

f f ′′′+ f ′ f ′′
)

ds+
3
2

C
) 1

2

, (3.16)
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where κ = κ(s), τ = τ(s), and c is some constant.

Proof. Let γ be a bi-f-harmonic curve on a Riemannian manifold M3, then the
solution of equation (3.14)), gives us (3.16) (obtain by using mapple). On the other
hand, the first part of equation (3.14), provide us

κ
′ =

1
3 f 2κ

(
f f ′′′+ f ′ f ′′−4κ

2 f f ′
)
. (3.17)

Taking the derivative of (3.17), we get

κ
′′ =−κ′2

κ
+

1
3κ

(
1
f 2

(
f f ′′′+ f ′ f ′′−4κ

2 f f ′
))′

. (3.18)

Substituting the values of κ′ and κ′′ from equations (3.17) and (3.18) in the second
part of (3.14), we get the equation (3.15). □

4. CHARACTERIZATION OF THE SUBMANIFOLD OF A RIEMANNIAN MANIFOLD
BY BI-F-HARMONIC CURVES

Let γ1 : I → M1 be a curve in an m1-dimensional Riemannian manifold M1. Let{
N0

1 ,N
1
1 ,N

2
1 , . . . ,N

m1−1
1

}
be an orthonormal frame in ΓT M1, where N0

1 = T1, N1
1 =N1

and N2
1 = B1 are the unit tangent vector, the unit normal vector and the unit binormal

vector of γ1, respectively. Then the corresponding Frenet equations are

∇
1
T1

Ni
1 =−κiNi−1

1 +κi+1Ni+1
1 , 0 ≤ i ≤ m1 −1,

where κ0 = κn = 0, κ1 = ||∇1
T1

N0
1 || is curvature and τ1 = κ2 =−⟨∇1

T1
N1,N2

1 ⟩ is torsion
of γ1 in M1, respectively. Next, we introduce the concept of bi-f-harmonic immersion

Definition 1. Let i : M1 → M be an isometric immersion from Riemannian man-
ifold M1 to a Riemannian manifold M such that γ1 is a bi-f-harmonic curve on M1.
If the curve γ = i ◦ γ1 is also a bi-f-harmonic curve on M, then the immersion i is a
bi-f-harmonic immersion.

Lemma 1. Let i : M1 → M be an isometric immersion from Riemannian manifold
M1 to a Riemannian manifold M. Then for a curve γ1 on M1 and the curve γ(s) =
i◦ γ1(s) with curvature κ on M, satisfies the following equations

∇
3
T1

T1 = h1
(

T1,∇
1,2
T1

T1

)
−A

h1
(

T1,∇
1
T1

T1

)T1 +DT1h1 (T1,∇
1
T1

T1
)

−ADT1 h1(T1,T1)T1 −∇
1
T1

(
Ah1(T1,T1)T1

)
−h1 (T1,Ah1(T1,T1)T1

)
+D2

T1
h1 (T1,T1)+∇

1,3
T1

T1, (4.1)

R(∇T1T1,T1)T1 = R1 (
∇

1
T1

T1,T1
)

T1 −Ah1(T1,T1)∇
1
T1

T1 +A
h1
(

∇1
T1

T1,T1

)T1

+
(

∇
∇1

T1
T1

h
)
(T1,T1)− (∇T1h)

(
∇

1
T1

T1,T1
)
, (4.2)
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where ∇
1,2
T1

= ∇1
T1

∇1
T1

and ∇
1,3
T1

= ∇1
T1

∇1
T1

∇1
T1

.

Proof. From Gauss and Weingarten formula, we have

∇
2
T1

T1 = ∇T1

(
∇

1
T1

T1,h1 (T1,T1)
)

= ∇
1,2
T1

T1 +h1(T1,∇
1
T1

T1)−Ah1(T1,T1)T1 +DT1h1(T1,T1).

Further taking the covariant derivative of above equation with respect to T and using
(2.2) and (2.3), we get the equation (4.1) . Whereas equation (4.2) is directly followed
from equations (2.2) and (2.6). □

Let γ be a bi-f-harmonic curve on M, then from (2.1), we have(
f f ′′′+ f ′ f ′′

)
T1 +

(
3 f f ′′+2 f ′2

)
∇T1T1 +4 f f ′∇2

T1
T1 + f 2

∇
3
T1

T1

+ f 2R(∇T1T1,T1)T1 = 0. (4.3)

Using Lemma (1) in the above equation, we get(
f f ′′′+ f ′ f ′′

)
T1 +

(
3 f f ′′+2 f ′2

)(
∇

1
T1

T1
)
+
(
3 f f ′′+2 f ′2

)
h1 (T1,T1)

+4 f f ′∇1,2
T1

T1 +4 f f ′h1 (T1,∇
1
T1

T1
)
−4 f f ′ Ah1(T1,T1)T1 +4 f f ′ DT1h1 (T1,T1)

+ f 2
∇

1,3
T1

T1 + f 2h1
(

T1,∇
1,2
T1

T1

)
− f 2Ah1(T1,∇

1
T1

T1)
T1 + f 2DT1h1 (T1,∇

1
T1

T1
)

− f 2
∇

1
T1
(Ah1(T1,T1)T1)− f 2h1 (T1,Ah1(T1,T1)T1

)
− f f 2ADT1 h1(T1,T1)T1

+ f 2D2
T1

h1 (T1,T1)+ f 2R
(
∇

1
T1

T1,T1
)

T1 − f 2Ah1(T1,T1)∇
1
T1

T1 + f 2A
h1
(

∇1
T1

T1,T1

)T1

+ f 2
(

∇
∇1

T1
T1

h
)
(T1,T1)− f 2 (

∇T1h1)(
∇

1
T1

T1,T1
)
= 0. (4.4)

The tangent part of above equation, is(
f f ′′′+ f ′ f ′′

)
T1 +

(
3 f f ′′+2 f ′2

)
∇

1
T1

T1 +4 f f ′∇1,2
T1

T1 −4 f f ′Ah1(T1,T1)T1

+ f 2
∇

1,3
T1

T1 − f 2
∇

1
T1

(
Ah1(T1,T1)

)
− f 2ADT1 h1(T1,T1)T1 + f 2R1 (

∇
1
T1

T1,T1
)

T1

− f 2Ah1(T1,T1)∇
1
T1

T1 = 0. (4.5)

Substituting the equations (2.6) and (2.5) in (4.5), we have(
f f ′′′+ f ′ f ′′

)
T1 +

(
3 f f ′′+2 f ′2

)
∇

1
T1

T1 +4 f f ′∇1,2
T1

T1 −4 f f ′Ah1(T1,T1)T1

+ f 2
∇

1,3
T1

T1 − f 2 (
∇

1
T1

A
)

h1(T1,T1)
T1 −2 f 2A(∇T1 h1)(T1,T1)

T1 −4 f 2A
h1
(

∇1
T1

T1,T1

)T1

−2 f 2Ah1(T1,T1)∇
1
T1

T1 + f 2R1 (
∇

1
T1

T1,T1
)

T1 = 0. (4.6)

By using Frenet Serret equations of γ1, (4.6) reduces to(
f f ′′′+ f ′ f ′′−4κ

2
1 f f ′−3κ1κ

′
1 f 2)T1 +

(
4κ1τ1 f f ′+2κ

′
1τ1 f 2 +κ1τ

′
1 f 2)B1

+
(
3κ1 f f ′′+2κ1 f ′2 +4κ

′
1 f f ′−κ

3
1 f 2 +κ

′′
1 f 2 −κ1τ

2
1 f 2)N1 −4 f f ′Ah1(T1,T1)T1
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− f 2 (
∇

1
T1

A
)

h1(T1,T1)
T1 −2 f 2A(∇T1 h1)(T1,T1)

T1 −4κ1 f 2Ah1(N1,T1)T1

−2κ1 f 2Ah1(T1,T1)N1 +κ1 f 2R1 (N1,T1)T1 = 0.

Taking inner product of above equation with T1 and using equation (2.5), we have

f f ′′′+ f ′ f ′′−3κ1κ
′
1 f 2 −4κ

2
1 f f ′−4 f f ′

〈
Ah1(T1,T1)T1,T1

〉
− f 2

〈(
∇

1
T1

A
)

h1(T1,T1)
T1,T1

〉
−2 f 2

〈
ADT1 h1(T1,T1)T1,T1

〉
+4 f 2

〈
Ah1(∇T1 T1,T1)T1,T1

〉
−4κ1 f 2 〈Ah1(N1,T1)T1,T1

〉
−2κ1 f 2 〈Ah1(T1,T1)N1,T1

〉
= 0. (4.7)

From equations (2.4) and (4.7), we obtain

f f ′′′+ f ′ f ′′−4κ
2
1 f f ′−3κ1κ

′
1 f 2 −4 f f ′

〈
h1 (T1,T1) ,h1 (T1,T1)

〉
−2 f 2 〈h1 (T1,T1) ,DT1h1 (T1,T1)

〉
−2κ1 f 2 〈h1 (N1,T1) ,h1 (T1,T1)

〉
− f 2

〈(
∇

1
T1

A
)

h1(T1,T1)
T1,T1

〉
= 0. (4.8)

Now, taking
〈
h1 (T1,T1) ,DT1h1 (T1,T1)

〉
= 1

2 DT1

〈
h1 (T1,T1) ,h1 (T1,T1)

〉
and equation

(2.7) in equation (4.8), we get

f f ′′′+ f ′ f ′′−3κ1κ
′
1 f 2 −4κ

2
1 f f ′−4 f f ′

〈
h1 (T1,T1) ,h1(T1,T1)

〉
− f 2DT1

〈
h1 (T1,T1) ,h1 (T1,T1)

〉
−2κ1 f 2⟨h1(N1,T1),h1(T1,T1)⟩

− f 2 〈(
∇T1h1)(T1,T1),h1 (T1,T1)

〉
= 0. (4.9)

Using the equation (2.5) in equation (4.9), we have

f f ′′′+ f ′ f ′′−3κ1κ
′
1 f 2 −4κ

2
1 f f ′−4 f f ′||h1 (T1,T1) ||2

− f 2DT1 ||h1 (T1,T1) ||2 −2κ1 f 2 〈h1(N1,T1),h1 (T1,T1)
〉

− f 2 〈DT1h1(T1,T1),h1(T1,T1)
〉
+2 f 2 〈h1(∇1

T1
T1,T1),h1(T1,T1)

〉
= 0. (4.10)

Since,

−2 f 2 〈h1 (
∇

1
T1

T1,T1
)
,h1 (T1,T1)

〉
=−2 f 2

κ1
〈
h1(N1,T1),h1(T1,T1)

〉
,

and,

f 2 〈DT1h1 (T1,T1) ,h1 (T1,T1)
〉
=

1
2

f 2DT1 ||h1 (T1,T1) ||2,

then equation (4.10), reduces to

f f ′′′+ f ′ f ′′−3κ1κ
′
1 f 2 −4κ

2
1 f f ′

= 4 f f ′||h1 (T1,T1) ||2 +
3
2

f 2DT1 ||h1 (T1,T1) ||2. (4.11)

Again the normal part of equation (4.4),(
3 f f ′′+2 f ′2

)
h1 (T1,T1)+4 f f ′h1 (T1,∇

1
T1

T1
)
+4 f f ′DT1h1 (T1,T1)
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+ f 2h1
(

T1,∇
1,2
T1

T1

)
+7 f 2DT1h1 (T1,∇

1
T1

T1
)
− f 2h1 (T1,Ah1(T1,T1)T1

)
+ f 2D2

T1
h1 (T1,T1)+ f 2

(
∇

∇1
T1

T1
h1
)
(T1,T1)− f 2 (

∇T1h1)(
∇

1
T1

T1,T1
)
= 0. (4.12)

Thus equation (2.5) can be written as

D2
T1

h1 (T1,T1)+2h1 (
∇

1
T1

T1,∇
1
T1

T1
)
+2h1

(
T1,∇

1,2
T1

T1

)
=
(
∇

2
T1

h1)(T1,T1)+4DT1h1 (T1,∇
1
T1

T1
)
. (4.13)

So, from equations (4.13) and (4.12), we have(
3 f f ′′+2 f ′2

)
h1 (T1,T1)+4 f f ′h1 (T1,∇

1
T1

T1
)
+4 f f ′DT1h1 (T1,T1)

− f 2h1
(

T1,∇
1,2
T1

T1

)
+5 f 2DT1h1 (T1,∇

1
T1

T1
)
− f 2h1 (T1,Ah1(T1,T1)T1

)
+ f 2 (

∇
2
T1

h1)(T1,T1)−2 f 2h1 (
∇

1
T1

T1,∇
1
T1

T1
)
+ f 2

(
∇

∇1
T1

T1
h1
)
(T1,T1)

− f 2 (
∇T1h1)(

∇
1
T1

T1,T1
)
= 0. (4.14)

Equation (2.5) and equation (4.14), gives us(
3 f f ′′+2 f ′2

)
h1 (T1,T1)+12 f f ′h1 (T1,∇

1
T1

T1
)
+4 f f ′

(
∇T1h1)(T1,T1)

+4 f 2h1
(

T1,∇
1,2
T1

T1

)
+3 f 2h1 (

∇
1
T1

T1,∇
1
T1

T1
)
+5 f 2 (

∇T1h1)(T1,∇
1
T1

T1
)

− f 2h1 (T1,Ah1(T1,T1)T1
)
+ f 2

(
∇

1,2
T1

h1
)
(T1,T1)+ f 2

(
∇

∇1
T1

T1
h1
)
(T1,T1)

− f 2 (
∇T1h1)(

∇
1
T1

T1,T1
)
= 0. (4.15)

Using Frenet Serret equation in (4.15), we have(
12 f f ′κ1 +4 f 2

κ
′
1
)

h1 (T1,N1)+4 f 2
κ1τ1h1 (T1,B1)+4 f 2

κ1
(
∇T1h1)(T1,N1)

+3 f 2
κ

2
1h1 (N1,N1)+4 f f ′

(
∇T1h1)(T1,T1)+κ1 f 2 (

∇N1h1)(T1,T1) (4.16)

=
(
4 f 2

κ
2
1 −3 f f ′′−2 f ′2

)
h1 (T1,T1)+ f 2 (h1(T1,Ah1(T1,T1)T1)− (∇2

T1
h1)(T1,T1)

)
.

Replacing B1 with - B1 in above equation and subtracting from equation (4.16), we
obtain

h1 (T1,B1) = 0.
Now from all the above discussion, we get the characterization of the submanifold of
a Riemannian manifold with the help of bi-f-harmonic curves.

Proposition 1. Let M1 be an isotropic submanifold of a Riemannian manifold M
and i : M1 → M be an isometric immersion, such that the curve γ1(s) on M1 and the
curve γ(s) = i◦ γ1(s) is a bi-f-harmonic curve with curvature κ on M, then

f f ′′′+ f ′ f ′′−3κ1κ
′
1 f 2 −4 f f ′

(
κ

2
1 +C

)
= 0, (4.17)

where ||h1 (T1,T1) ||2 =C is some constant.
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Proof. Using the properties of isotropic submanifold in (4.4), we obtain the result.
□

Corollary 3. Let i : M1 → M be an isometric immersion between Riemannian
manifold M1 to a Riemannian manifold M, such that γ(s) = i◦γ1(s) is a bi-f-harmonic
curve with curvature κ on M corresponding to curve γ1(s) on M1. Suppose that M1
is an isotropic submanifold and f is constant then curvature κ1 on M1 is constant.

Proof. From equation (4.17), we have

κ1κ
′
1 = 0. (4.18)

Integrating equation (4.18) with respect to parameter s, we obtain

κ1 =C1,

where C1 is a constant. □

Theorem 5. Let M1 be a totally geodesic submanifold of Riemannian manifold M
and i : M1 →M be an isometric immersion such that γ(s)= i◦γ1(s) is a bi-f-harmonic
curve with curvature κ on M corresponding to γ1(s) on M1, then

f f ′′′+ f ′ f ′′−3κ1κ
′
1 f 2 −4κ

2
1 f f ′ = 0.

Proof. Since M1 is a totally geodesic submanifold of M, so taking h1 = 0 in the
tangent part of equation (4.11), we get the required result. □

Theorem 6. Let i : M1 → M be a bi-f-harmonic immersion between Riemannian
manifold M1 to a Riemannian manifold M, then M1 is a totally umbilical submanifold
of Riemannian manifold M. Then mean curvature (H), holds the equation

D2
T1

H =

(
||H||2 +κ

2
1 −2

f ′2

f 2 −3
f ′′

f

)
H −4

f ′

f
DT1H. (4.19)

Conversely, if i : M1 → M be an isometric immersion and M1 is totally geodesic, then
i is a bi-f-harmonic immersion.

Proof. Let i be a bi-f-harmonic immersion from Riemannian manifold M1 to a
Riemannian manifold M. Since M1 is a totally umbilical submanifold, so equation
(4.15), reduces to

4 f 2
κ1
(
∇T1h1)(T1,N1)+3 f 2

κ
2
1H +4 f f ′DT1H +κ1 f 2 (

∇N1h1)(T1,T1)

=
(
4 f 2

κ
2
1 −3 f f ′′−2 f ′2

)
H + f 2h1 (T1,AHT1)− f 2 (

∇
2
T1

h1)(T1,T1) . (4.20)

Replacing N1 with −N1 in (4.20) and using (4.20), we get

4κ1 f 2 (
∇T1h1)(T1,N1)+κ1 f 2 (

∇N1h1)(T1,T1) = 0. (4.21)

Substituting equation (4.21) from equation (4.20), we obtain(
−κ

2
1 f 2 +3 f f ′′+2 f ′2

)
H
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= f 2h1 (T1,AHT1)− f 2 (
∇

2
T1

h1)(T1,T1)−4 f f ′DT1H. (4.22)

Using the equations (2.4) and (4.13) in equation (4.22), we get

f 2D2
T1

H =
(

f 2||H||2 + f 2
κ

2
1 −3 f f ′′−2 f ′2

)
H −4 f f ′DT1H.

Therefore

D2
T1

H =

(
||H||2 +κ

2
1 −3

f ′′

f
−2

f ′2

f 2

)
H −4

f ′

f
DT1H.

Conversely, we suppose that the M1 is totally geodesic and i : M1 7→M is an isometric
immersion. Let γ1 be a bi-f-harmonic curve with curvature κ1 on M1, and γ(s) = i◦γ1
be a curve on M. Then from (4.3) and (4.4), we have(

f f ′′′+ f ′ f ′′
)

T1 +
(
3 f f ′′+2 f ′2

)
∇T1T1 +4 f f ′∇2

T1
T1 + f 2

∇
3
T1

T1 + f 2R(∇T1T1,T1)T1

=
(

f f ′′′+ f ′ f ′′
)

T1 +4 f f ′
(

∇
1,2
T1

+h1 (T1,∇
1
T1

T1
)
−Ah1(T1,T1)T1 +DT1h1(T1,T1)

)
+
(
3 f f ′′+2 f ′2

)
∇

1
T1

T1 +
(
3 f f ′′+2 f ′2

)
h1 (T1,T1)+ f 2

(
∇

1,3
T1

T1 +h1
(

T1,∇
1,2
T1

T1

)
−Ah1(T1,∇

1
T1

T1)
T1 +DT1h1 (T1,∇

1
T1

T1
)
−
(
∇

1
T1

A
)

h1(T1,T1)
T1 −h1 (T1,Ah1(T1,T1)T1

)
−ADT1 h1(T1,T1)T1 +D2

T1
h1 (T1,T1)+R1 (

∇
1
T1

T1,T1
)

T1 −Ah1(T1,T1)∇
1
T1

T1

+Ah1(∇1
T1

T1,T1)
T1 +

(
∇

∇1
T1

T1
h1
)
(T1,T1)−

(
∇T1h1)(

∇
1
T1

T1,T1
))

. (4.23)

Using Frenet Serret equation and taking second fundamental form h1 = A = 0 in
equation (4.23), we obtain(

f f ′′′+ f ′ f ′′
)

T1 +
(
3 f f ′′+2 f ′2

)
∇T1T1 +4 f f ′∇2

T1
T1 + f 2R(∇T1T1,T1)T1 + f 2

∇
3
T1

T1

=
(

f f ′′′+ f ′ f ′′
)

T1 +
(
3 f f ′′+2 f ′2

)
∇

1
T1

T1 +4 f f ′∇1,2
T1

T1 + f 2
∇

1,3
T1

T1

+ f 2R1 (
∇

1
T1

T1,T1
)

T1 = 0.

Hence γ is a bi-f-harmonic curve on M, and i is a bi-f-harmonic immersion. □

Corollary 4. Let M1 be a totally umbilical submanifold of Riemannian manifold M
and i : M1 → M be an isometric immersion such that the mean curvature H satisfies
the equations (4.19) and

f 2D
∇1

T1
T1

H = 4 f f ′||H||2T1 +2 f 2||H||2∇
1
T1

T1 +2 f 2h1
(

∇
1
∇1

T1
T1

T1,T1

)
. (4.24)

Then i is a bi-f-harmonic immersion.

Proof. Let γ1(s) be a bi-f harmonic curve on M1 and i : M1 → M is an isometric
immersion on M such that M1 is a totally umbilical submanifold, then for a curve γ(s)
on M, from equations (4.3) and (4.4), we have(

f f ′′′+ f ′ f ′′
)

T1 +
(
3 f f ′′+2 f ′2

)
∇T1T1 +4 f f ′∇2

T1
T1 + f 2R(∇T1T1,T1)T1 + f 2

∇
3
T1

T1
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=
(

f f ′′′+ f ′ f ′′
)

T1 +
(
3 f f ′′+2 f ′2

)
∇

1
T1

T1 + f 2
∇

1,3
T1

T1 +
(
3 f f ′′+2 f ′2

)
h1 (T1,T1)

+4 f f ′∇1,2
T1

T1 +4 f f ′h1 (T1,∇
1
T1

T1
)
−4 f f ′Ah1(T1,T1)T1 +4 f f ′DT1h1 (T1,T1)

+ f 2h1
(

T1,∇
1,2
T1

T1

)
− f 2A

h1
(

T1,∇
1
T1

T1

)T1 + f 2DT1h1 (T1,∇
1
T1

T1
)

− f 2
∇

1
T1
(Ah1(T1,T1)T1)− f 2h1 (T1,Ah1(T1,T1)T1

)
− f 2ADT1 h1(T1,T1)T1

+ f 2D2
T1

h1 (T1,T1)+ f 2R1 (
∇

1
T1

T1,T1
)

T1 − f 2Ah1(T1,T1)∇
1
T1

T1 + f 2A
h1
(

∇1
T1

T1,T1

)T1

+ f 2
(

∇∇T1 T1h1
)
(T1,T1)−7 f 2 (

∇T1h1)(
∇

1
T1

T1,T1
)
. (4.25)

Using the Frenet- Serret formulae and (2.8) in equation (4.25), we get(
f f ′′′+ f ′ f ′′

)
T1 +

(
3 f f ′′+2 f ′2

)
∇T1T1 +4 f f ′∇2

T1
T1 + f 2R(∇T1T1,T1)T1 + f 2

∇
3
T1

T1

=
(

f f ′′′+ f ′ f ′′
)

T1 +
(
3 f f ′′+2 f ′2

)
∇

1
T1

T1 +4 f f ′∇1,2
T1

T1 +
(
3 f f ′′+2 f ′2

)
H

−4 f f ′AHT1 +4 f f ′DT1H + f 2D2
T1

H + f 2
∇

1,3
T1

T1 −κ
2
1 f 2 − f 2

∇
1
T1
(AHT1)

− f 2h1 (T1,AHT1)− f 2ADT1 HT1 + f 2R1 (
∇

1
T1

T1,T1
)

T1 − f 2
κ1AHN1

+ f 2D
∇1

T1
T1

H −2 f 2h1
(

∇
1
∇1

T1
T1

T1,T1

)
. (4.26)

Using equations (4.19) in (4.26), we obtain(
f f ′′′+ f ′ f ′′

)
T1 +

(
3 f f ′′+2 f ′2

)
∇T1T1 +4 f f ′∇2

T1
T1 + f 2R(∇T1T1,T1)T1 + f 2

∇
3
T1

T1

=
(

f f ′′′+ f ′ f ′′
)

T1 +
(
3 f f ′′+2 f ′r

)
∇

1
T1

T1 +4 f f ′∇1,2
T1

T1 + f 2
∇

1,3
T1

T1

+ f 2R1 (
∇

1
T1

T1,T1
)

T1 −4 f f ′AHT1 − f 2
∇

1
T1
(AHT1)− f 2ADT1 HT1

−κ1 f 2AHN1 + f 2
(

∇
∇1

T1
T1

H1
)
(T1,T1)− f 2 (

∇T1h1)(
∇

1
T1

T1,T1
)
. (4.27)

Since AHT1 = ||H||2T1, AHN1 = ||H||2N1, ∇1
T1
(AHT1) = ||H||2∇1

T1
T1, ADT1 HT1 = 0,(

∇
∇1

T1
T1

h1
)
(T1,T1) = D

∇1
T1

T1
H − 2h1

(
∇1

∇1
T1

T1
T1,T1

)
and

(
∇T1h1

)(
∇1

T1
T1,T1

)
= 0,

therefore (4.27), gives us(
f f ′′′+ f ′ f ′′

)
T1 +

(
3 f f ′′+2 f ′2

)
∇T1T1 +4 f f ′∇2

T1
T1 + f 2R(∇T1T1,T1)T1 + f 2

∇
3
T1

T1

=
(

f f ′′′+ f ′ f ′′
)

T1 +
(
3 f f ′′+2 f ′2

)
∇

1
T1

T1 +4 f f ′∇1,2
T1

T1 + f 2
∇

1,3
T1

T1

+ f 2R1 (
∇

1
T1

T1,T1
)

T1 −4 f f ′||H||2T1 −2 f 2||H||2∇
1
T1

T1 + f 2D
∇1

T1
T1

H

−2 f 2h1(∇1
∇1

T1
T1

T1,T1). (4.28)

As γ1 is a bi-f-harmonic curve on M1, so equation (4.28), implies that(
f f ′′′+ f ′ f ′′

)
T1 +

(
3 f f ′′+2 f ′2

)
∇T1T1



STUDY OF BI-F-HARMONIC CURVE ALONG IMMERSIONS 451

+4 f f ′∇2
T1

T1 + f 2
∇

3
T1

T1 + f 2R(∇T1T1,T1)T1

=−4 f f ′||H||2T1 −2 f 2||H||2∇
1
T1

T1 + f 2D
∇1

T1
T1

H −2 f 2h1
(

∇
1
∇1

T1
T1

T1,T1

)
. (4.29)

The equations (4.24) and (4.29), together complete the proof. □

4.1. Characterization of submanifold of a Riemannian manifold by bi-harmonic
curves

In this subsection, we study the characterization of bi-1-harmonic curve (bi-harmo-
nic curve). A bi-harmonic curve (bi-1-harmonic curve) is a special case of bi-f-
harmonic curve, where f = 1. Taking f = 1 in (2.1), we have

∇
1,3
T1

T1 +R1 (
∇

1
T1

T1,T1
)

T1 = 0.

Let i : M1 → M is an isometric immersion from the Riemannian manifold M1 to a
Riemannian manifold M, and γ(s) is a bi-harmonic curve on M, then

∇
3
T1

T1 +R
(
∇

1
T1

T1,T1
)

T1 = 0. (4.30)

The tangential part of (4.30) and from equation (4.11), we get

−3κ1κ
′
1 f 2 =

3
2

f 2DT1 ||h1(T1,T1)||2. (4.31)

Also from equation (4.16) and normal part of (4.30), we obtain

−4κ
2
1h1 (T1,T1)+4κ

′
1h1 (T1,N1)+4κ1τ1h1 (T1,B1)+3κ

2
1h1 (N1,N1)

+4κ1
(
∇T1h1)(T1,N1)−h1 (T1,Ah1(T1,T1)T1

)
+
(
∇

2
T1

h1)(T1,T1)

+κ1
(
∇N1h1)(T1,T1) = 0. (4.32)

Changing B1 into - B1 in equation (4.32) and then subtracting from equation (4.32),
we get

h1 (T1,B1) = 0.

Theorem 7. Let i : M1 →M be an isometric immersion between Riemannian man-
ifolds M1 and M such that γ1 is a curve with curvature κ1 in M1 and γ(s) = i◦ γ1(s)
is a bi-f-harmonic curve with curvature κ in M. Then M1 is an isotropic submanifold
if and only if its curvature is constant.

Proof. Let γ1 is a curve with constant curvature in M1, then from (4.31), we have

DT1 ||h1 (T1,T1) ||2 = 0.

Thus ||h1 (T1,T1) || is constant, hence M1 is an isotropic submanifold.
Conversely, let M1 be an isotropic submanifold, then from equation (4.31), we get

κ1 = constant. □
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Theorem 8. Let i be a bi-harmonic immersion from Riemannian manifold M1 to
a Riemannian manifold M and let M1 be a totally umbilical submanifold of M. Then
the mean curvature vector field H satisfies

D2
T1

H =
(
κ

2
1 + ||H||2

)
H, (4.33)

Conversely, Let i : M1 7→ M be an isometric immersion from Riemannian manifold
M1 to a Riemannian manifold M, then

(1) If M1 be a totally geodesic, then i is a bi-harmonic immersion.
(2) If M1 be a totally umbilical, such that H satisfies the equation (4.33) and

D
∇1

T1
T1

H = 2∇1
T1

(
||H||2T1

)
, then i is a bi-harmonic immersion.

Proof. Let i be a bi-harmonic immersion between Riemannian manifold M1 and
M. Since M1 is a totally umbilical submanifold, therefore equation (4.16), reduces to

4κ1
(
∇T1h1)(T1,N1)+3κ

2
1H +κ1

(
∇N1h1)(T1,T1)

= 4κ
2
1H +h1 (T1,AHT1)−

(
∇

2
T1

h1)(T1,T1) . (4.34)

Replacing N1 into - N1 in equation (4.34) and then substracting from equation (4.34),
we get

4κ1
(
∇T1h1)(T1,N1)+κ1

(
∇N1h1)(T1,T1) = 0. (4.35)

Substituting equation (4.35) in equation (4.34), we have

3κ
2
1H = 4κ

2
1H + ⟨AHT1,T1⟩H −

(
∇

2
T1

h1)(T1,T1) . (4.36)

Using the equations (2.4) and (4.13) in equation (4.36), we have

D2
T1

H =
(
κ

2
1 + ||H||2

)
H.

Conversely, (1) let i : M1 7→ M be an isometric immersion such that M1 is a totally
geodesic submanifold of M and γ1 be a bi-harmonic curve with curvature κ1 on M1.
Taking f = 1 in (4.23), we have

∇
3
T1

T1 +R(∇T1T1,T1)T1 = ∇
1,3
T1

T1 +h1(T1,∇
1,2
T1

T1)−Ah1(T1,∇
1
T1

T1)
T1

+DT1h1(T1,∇
1
T1

T1)−∇
1
T1

(
Ah1(T1,T1)T1

)
−h1 (T1,Ah1(T1,T1)T1

)
−ADT1 h1(T1,T1)T1

+D2
T1

h1 (T1,T1)+R1 (
∇

1
T1

T1,T1
)

T1 −Ah1(T1,T1)∇
1
T1

T1 +A
h1
(

∇1
T1

T1,T1

)T1

+
(

∇
∇1

T1
T1

h1
)
(T1,T1)−

(
∇T1h1)(

∇
1
T1

T1,T1
)
. (4.37)

Using the fact that M1 is totally geodesic and the Frenet Serret formulae in equation
(4.37), we get

∇
3
T1

T1 +R(∇T1T1,T1)T1 = ∇
1,3
T1

T1 +R1 (
∇

1
T1

T1,T1
)

T1. (4.38)

Since γ1 is a bi-harmonic curve on M1, so from equation (4.38), we can say that
γ(s) = i◦ γ1 is bi-harmonic curve on M.
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Now for (2), let M1 be a totally umbilical submanifold and satisfies the equation
(4.33), then

∇
3
T1

T1 = ∇
1,3
T1

T1 −∇
1
T1

(
||H||2T1

)
−
(
κ

2
1 + ||H||2

)
H +D2

T1
H, (4.39)

and

R(∇T1T1,T1)T1 = R1 (
∇

1
T1

T1,T1
)

T1 −∇
1
T1
(||H||2T1)+D

∇1
T1

T1
H. (4.40)

Adding the equations (4.39) and (4.40), we obtain

∇
3
T1

T1 +R(∇T1T1,T1)T1 = ∇
1,3
T1

T1 −∇
1
T1

(
2||H||2T1

)
−
(
κ

2
1 + ||H||2

)
H

+D2
T1

H +R1 (∇T1T1,T1)T1 +D
∇1

T1
T1

H. (4.41)

Using the fact that γ1 is a bi-harmonic curve on M1, equation (4.41) can be written as

∇
3
T1

T1 +R(∇T1T1,T1)T1 =−∇
1
T1

(
2||H||2T1

)
+D

∇1
T1

T1
H.

Thus from above equation, we have

∇
3
T1

T1 +(∇T1T1,T1)T1 = 0,

if and only if D
∇1

T1
T1

H = 2∇1
T1

(
||H||2T1

)
, hence i is a bi-harmonic immersion. □
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