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Abstract. In this research, we establish the above and below bounds via the left and right sides
of Hermite—Hadamard-type inequalities including conformable fractional integrals with the aid
of the mappings whose second derivatives are bounded. Instead of using the convexity condition

in these obtained inequalities, we used condition f'(a+b—1t)— f'(1) > 0,1 € {a, #] We
have presented examples of the inequalities acquired. We have given the graph showing the
correctness of the presented examples.
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1. INTRODUCTION AND PRELIMINARIES

Convex function theory has many uses in the fields of mathematics, physics, and
engineering. Let I be convex set on R. The mapping f: I — R is called convex
function on [, if it satisfies the following inequality:

flx+ (1 =1)y) <tf(x)+(1=1)f(y)

for all (x,y) € I and ¢ € [0,1]. (see, e.g. [1 1], and the reference therein). There is a
great connection between inequalities and the theory of convex functions. This bond
emerged starting from the definition of the convex function and its acceleration is
increased by the researches made afterwards. The Hermite-Hadamard-type inequal-
ities, which are obtained by using convex functions and have been the subject of many
studies, has been studied in the literature extensively. For more information on the
Hermite-Hadamard type inequality obtained for different classes of convex, please
refer to the references [5, 15—17]. The right-hand side of the Hermite-Hadamard-
type inequality is called trapezoid-type inequality in the literature. Dragomir and
Agarwal proved trapezoid-type inequalities based on convex mappings in [8]. The
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left side of the Hermite—Hadamard-type inequality is called midpoint-type inequal-
ity. Kirmaci acquired midpoint-type inequalities with the aid of the convex mappings
in [20]. Researchers began to come up with ideas on how to obtain these inequalities
when functions are not convex. With this motivation, many researchers have worked
on this subject. Dragomir et al. presented trapezoid-type and midpoint-type exten-
sions by means of the bounds of the twice-differentiable rather than the condition of
convexity in [9] and [10], respectively. More precisely, Dragomir et al. obtained new
bounds for classical midpoint-type and trapezoid-type inequalities.

Theorem 1 ([10, page 6], [9, page 8]). Assume that f: [a,b] — R is a twice-
differentiable mapping such that there exists real constants m and M so that m <
f" < M . Then, the following inequalities hold:

b
(b—a)? 1 a+b (b—a)?
" Sb—a/f(x)dx_f< 2 >§M 24 4.
and
b
(b—a) _ fla)+f(b) 1 (b—a)®
my ST, _b—a/f(x)dng % (1.2)

For different studies obtained with this motivation, the following references can be
consulted [2,6,25].

Fractional analysis, ”Can fractional derivatives and fractional integrals be taken?”
emerged from the question. Today, it is the subject of study by many researchers.
Many types of fractional integrals are studied in the literature. Especially, there are
many results obtained with the help of Riemann-Liouville fractional integrals, gener-
alized fractional integrals, and conformable fractional integrals.

The Euler Gamma function and Euler Beta function are defined

[ (x):= /txfle*tdt
0

and
1

B(x,y) = /f‘*l (1=t ds,
0

respectively for x,y € R. Let us give the definitions of Riemann-Liouville fractional
integrals in the literature.

Definition 1 (see [ 19, page 71], [21]). Let us consider f € L;[a,b|. The Riemann-
Liouville fractional integrals of order 3 > 0 are described by

B o= — [M )b t>a
o) = gy |, 0P x>
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and

P f) = F(lﬁ)/b (t—xP f(O)dr,  x<b.

Here, I' is the Euler Gamma function and JO, f(x) = J)_ f(x) = f(x).

Many studies contributing to the literature have been considered, especially us-
ing the convexity of the function. Using Riemann-Liouville fractional integrals for
functions of one variable, Hermite—Hadamard-type inequalities for convex functions
were obtained by Sarikaya et al. in [23]. Sarikaya first [23] presented the Hermite—
Hadamard-type inequalities involving Riemann-Liouville integrals as follows:

Theorem 2. Let f: [a,b] — R be a positive mapping with f € Ly [a,b]. If f is a
convex mapping on [a,b), then the following inequalities hold:

f( 2 >§2(b—a)s [’a*f(bﬂfb-f(a) < e

with 3 > 0.

Riemann-Liouville fractional integrals for convex functions of two variables were
given by Sarikaya [22] and Hermite-Hadamard-type inequalities for convex func-
tions were proved in the coordinates obtained using these integrals. Chen obtained
the midpoint-type and trapezoid-type inequality for Riemann-Liouville fractional in-
tegrals by using the condition f'(a+b—x) > f'(x), x € [a, %b] instead of the con-
vexity of f in paper [7].

Theorem 3 (see [7, page 2,3]). Consider f: [a,b] —R is a positive, twice-differ-
entiable function and f € Ly [a,b]. If f" is bounded |a, D], then we derive

m(b—a)Z(BZ_B—|—2) TB+1) [ oo fath
5B DB S 2p_af 8 1) +7Ef(a)] f( ! )
(-0 (BP-B+2)

= BB NB2)
and
(b-aPB _ f@+fB) T+ [ 0 s
BB S 2 g )
(b—a)’P

=2+ 1) (B+2)

for B> 0. Here, m= inf f"(t) and M = sup f” ().
1€[a,b] t€la,b]

Budak et al. acquired the left and right-hand sides of fractional Hermite—Hada-
mard-type inequalities with the aid of the bounds of the second derivative in [3].
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Theorem 4 (see [3, page 3,8]). Let f: [a,b] —R denote a positive, twice-differ-
entiable function and f € Ly [a,b] If f" is bounded i.e. m < f"(t) <M, t € [a,b],
m,M € R, then we have the inequalities

. (b—a)* -IrB+1) [ g 8 o (ath

BB - (b_aP P«#ff“’+ﬁﬁw~“)] f( 2 )
<—(b_a)2 M
SIp eI

f@+f(b) 2T+

(1.3)

(b—a)*B(B+3)

<

by )5 110

SE+D(B2) © 2 oo
S e .
e < [ () et (45)]
(57) < S
and

(b—a)® _ fla)+f(b) 2P'T(B+1) [J5+f<a+b> Y <a+b>]

"iBr2) = 2 (b—a) 2 2
< (b_a)zM
~4(B+2)
forp>0.

Budak et al. obtained some trapezoid-type and midpoint-type inequalities via gen-
eralized fractional integrals with the help of the functions whose second derivatives
are bounded [4].

In 2017, Jarad et al. [14] defined the conformable fractional integral operators. For
studies on the conformable fractional approach and conformable fractional integrals,
see references [ 1, 13, 18].

Definition 2 (see [ 14, page 5]). For f € L;[a,b], the conformable fractional integ-
ral operators of order B € C, Re(p) > 0 and o € (0, 1] are given by

byap_ L [(E-a*=-a"\""r@)
Y0 = £ ( o > e

O (h—1® B—1
Sy (= O

(0
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Set et al. proved Hermite-Hadamard-type inequalities by means of conformable
fractional integral operators in [24].

Theorem 5 (see [12, page 35]). Note that f is a convex function on [a,b]. Then,
the following double inequality is satisfied

a+b\ _ 27 IT(B+1)ob [p
<
f( 2 )_ b-—a)®® (%)
@0 )
Here, B >0, oo € (0,1] and T is Euler Gamma fuction.

YF(b)+ BY(M)J(@

2

This study consists of three sections including the introduction and preliminaries.
In section 2, we will acquire some new versions midpoint-type and trapezoid-type
inequalities based on conformable fractional integrals. In some of these acquired
inequalities, we will use the bounds of the second derivative of the function rather
than the convexity of the function. We also acquired the new version of Hermite—
Hadamard-type inequalities via conformable fractional integrals. In this obtained
inequality, we used the condition f'(a+b—1t) — f'(t) > 0, t € [a, “t2] rather than
the convexity condition.

2. MAIN RESULTS

In this section, we obtain two new midpoint-type inequalities for the case of con-
formable fractional integrals. We also establish two new versions of trapezoid-type
inequalities with the help of conformable fractional integrals. In these obtained four
inequalities, the bounds of the second derivative of the function are used instead of
the convexity of the function. We also obtained some new Hermite—Hadamard-type
inequalities for the case of conformable fractional integrals. In this obtained inequal-
ity, we used the condition f'(a+b—x) > f'(x) for all x € [a,%}2] instead of the
convexity of f.

Theorem 6. Let us consider that f: [a,b] — R is a twice-differentiable mapping.
Let us also consider that there exist real constants m and M so that m < f" < M and
B >0, o€ (0,1]. The following midpoint-type inequalities

mB(b;“)zzz@H,B) @2.1)

29I (B +1)o [p
= (b—a)* [(“#)
Bty (24 )

are valid. Here, ‘B is Euler Beta function.

2

YO (B) + BT(M)f(a)] —f (“;b )
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Proof. By using the Definition 2, we establish
298710 (B+ 1) 0P {B

o Byo a
YU (0)+ X >]

b-a)® (4 :
2ot | 1L ((l’gﬂ)“—(r—f@b)“)ﬁ‘l 10
o-a®  |[TB ) z ()
a+h AN R ay B-1
+L (bT) _(%b_t)
T'(B) Ja o
Xf(t)l_ad[].
(43" —1)
Taking advantage of the change of variables, we acquire
20‘5711—‘('3""1)0‘6 [[3 o Byt ]
ne T -
ooaf® Ly O gy T
2 B+ 1) ’%“)“—(%—t)“ " patbn
b (1 ocﬁ o (azib—t)l_a 4

ath (b;a)“f(ﬂft)a p-1 f()
*m/a ( « (5=

2

e (b_a)(xﬁ o (#_t)l—oc
With the help of the inequality (1.5), we obtain

b e ] 5 (43)

_ 2% ipab ((%) —@b—r)“)“

- Ja
y (f(t)+f(a+b—r)—2f(#))d

C

If we take advantage of the facts that

101 (452 = [ s

(2.2)
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and

flaso-0-1(“50) = [ 1o

2]
then we acquire
b t , a+b—t ,
fO) +fla+b—r1)=2f (a;r ) _ /H;bf (s)ds—i-/azh £'(s)ds (2.3)
a+b—t a+b—t
=/, f’(s)ds—wa f(a+b—s)ds
621+b7t i
:/m [f'(s)= f'(a+b—s)]ds.
We also acquire
F6)=flatb=s)= [ 0. Q4
a+b—s

With the help of the condition m < f”(y) < M for all y € [a,b| and from the equality
(2.4), we derive

Ay N Ay
/ mdy < / f'(y)dy < / Mdy,

a+b—s a+b—s a+b—s
which gives

m(2s—a—b) < f'(s)— f'(a+b—s) <M(2s—a—Db).

From the equality (2.3), we obtain

a+b—t a+b—t

m (2s—a—b)§/

a+b atb
2 2

a+b—t
[f/(s)—f’(a‘Fb—S)}dSSM/M (2s—a—b).

Hence, it yields

2 2
m<a;b—t> Sf(t)—l—f(a—l—b—t)—Zf(a;b)§M<a+b—t> . (25)

pipop (o) (2" \ P! ami
Multiplying the inequality (2.5) by ( 2 ) > ( % _ t) and

(b—a)ocB o
then integrating with respect to ¢ on the interval [a, %] , we obtain
_ ath [ (b—a)® PG +1
20 () (),
(b— a)OCB a o 2

2% 1pod ((br)“—(a;b—&)“l

- (b—a)OCB a
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O+ fa+b=n)—2f (42))

(452 =)

dr

2B ((bz“)a— (“ﬁb—t)“)ﬁl (a—i—b _t>°‘+‘dt

(b—a)® Ja

Finally, we obtain

mB(bg_a)zQ?(z—H,B)

Oty e ] -1(55)

SMW—M@H,B)_

N‘+

8
Finally, the proof of Theorem 6 is completed.

O

Remark 1. If we choose oo = 1 in Theorem 6, then the inequalities (2.1) become

to (1.3).

Remark 2. 1f we assign o = 1 and = 1 in Theorem 6, then the inequalities (2.1)

reduce to the inequalities (1.1).

Example 1. If the mapping f: [a,b] = [0,1] — R is defined as f(¢) = ¢> +¢? such
that 2 < f”(¢) <5 for ¢ € [0,1]. Under these conditions, we obtain the mid-term of

inequality (2.1) as follows

2P0 (B+ 1)of [B Y4 BYE‘%) f(a)] _f<a+b>

(b— aOLﬁ (452)" 2
— 28B4 1)a [ -+ o s o] -1 (3)
o ay\ B-1
e (Qr=feiy e,
z oy

11
~(z+a2)

By using the change of variables, we have

280 ol | 1)+ #1870 -7 ()
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<t3+t2+(1—t)3+(1—t)2—2(213+212))d

(5-0"°

=Py ( +1B>

As a result, the inequalities (2.1) can be found as follows

b(0) Bo(zns) o)

Theorem 7. Note that f: [a,b] — R is a twice-differentiable mapping such that
there exists real constants m and M so that m < f” < M. Then, we derive

mw [1—3( +1, B)} (2.6)

=

X

8 LB
L f@+f(b) 2T+ 1)ab [B
= 2 (b—a)®® (%)

b a(2 )]

where ‘B is Euler Beta function.

o By a
B+ T >]

2

Proof. From the equality (1.5), we acquire

fl@)+f(b) 27 'T(B+ 1)a? {s

By a :
Yo+ F@] e

2 b-a® =)
_f(a)+f() 20B~ IB(XB alb (bT) _(#_t)a B—1
2 (b— a)ocB o
MEORS TR
(51
e (05 (o0t
(b_a)aﬁ o

@+ —f O —fla+b-1)

(45 —r)
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With the help of the equalities

- [ ras
and
106)-staro-n= [ fsas
we derive
b t
@+ B) = (0 +fatb=0)= [ floas— [ fea s

—/tf’(a—s—b—s)ds—/alf/(@ds
_/ "(a+b—y) f(s)]ds.

We also provide

a+b—s
Flatb=s)-r6)= [ o). 29)
From the equality (2.9) and the condition m < f” < M, we get
m(a+b—2s) < f'(s)— flla+b—s) <M(a+b—2s). (2.10)

With the help of the equality (2.8) and the inequality (2.10), we have

/atm(a—l—b—Zs)dsS /t [f'(s) = f'(a+b—s)]ds < /atM(a-}-b—Zs)ds

a

such that

m(b—1)(t —a) < f(a)+ £(b) — (F(1) + fla+b—1)) SM(b—1)(t—a). (2.11)

boayo_(app o\ Bl _
Multiplying the inequality (2.11) by 2 @ ?Séﬁ <( )" 0(( )" ) (“erb —t)a "and
then integrating with respect to ¢ on the interval [a, %] , we readily obtain

20 pob ((bz“)“— W—r)“)“ (L -

(b—a)® Ja 2
. 20([5 IB(XB a+h< bT . a+b t)a>ﬁl

(b amB
a-l—b—t))

dr

(%b—f)1 )
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itgod o (050" (520" farn N
_M(b—a)“B ; ( o (2 t) (b—1)(t—a)dr.

By using the above inequalities, we can easily get

2oz re)

F@fB) 2B [ g
=72 (b—a)® ey T O+ P10

)]

Finally, the proof of Theorem 7 is accomplished. g

Remark 3. 1f we choose o = 1 in Theorem 7, then the inequalities (2.6) coincides
with the inequalities (1.4).

Remark 4. 1If we take oo = B = 1 in Theorem 7, then Theorem 7 equals to (1.2).

Example 2. Let us note that the function f: [a,b] = [0, 1] — R is defined as f(¢) =
1> —t* such that —10 < f"(t) < 2 for ¢ € [0, 1]. By these conditions, the right-side of
(2.6) becomes as follows

fla)+f(b) 2°°'T(B+1)of {B o Bya }

— T + T a
2 boaf® Ly O My T
fO)+7(1)

= 27'T(B+ 1)aP

1
0B IBOCB/ ( % ) N+f 11;t))dt

(3-1)

B o Byt
(Hrf<>+ r()m]

Q

— 0B~ IBaB/M( 2 G>B 1 t2+t4 (1_t)2+(1_t)4>dt,
(2

Ao G Dl

Lastly, the inequality (2.6) becomes to
T Gre) gl <t (2 (Grre) ron (G )5
<E[é—@<i+1,s)].

To illustrate the correctness of Example 2, one can refer to the Figure 1.
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I The left term
[ 1The mid term
I The right term

FIGURE 1. Graph for the result of Example 2 computed and plotted
in MATLAB.

Theorem 8. Let f: [a,b] — R be a differentiable mapping and f € Ly [a,b]. If

flla+b—x) > f'(x) for all x € [a,*S2]. Then, the following Hermite~Hadamard-
type inequality for conformable fractional integrals

a+b\ _ 2 'T(B+1)aP [g o Byt .
F(50) T e P s

- (a+b

<S4S o1
is valid.

Proof. From the equalities (2.2) and (2.3), we have

2817 (B4-1)ab [ﬁ
(b—a)®

_2ipab o (05 - (45— vy
(b—a)™ Ja o -

aipab (0 (o2 0"\ P ragy !
(b—a)®® Ja o
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x [/aﬁbt [f'(s)— f(a+b—s)] ds} dr

ath

_ oub-ipa? Hb((b;q“._(@f-o“>5“<a+4>_t>“1

(b— a)“ﬁ a

X [/,2 [f'(a+b—u)—f'(u)] ds] dt >0,

which presents the first inequality in (2.12).
Similar to foregoing process, by the equalities (2.7) and (2.8), we obtain

fla)+f(b) 2"“3“1"(ﬁ+1)00ﬁ [B
2 ( (a+b)

2% 1B0f bT — (42 t)a - a—i—b_t ol
(b aaB 2

o Bya a
X0+ P @)

—(f()+ a+b—t))]dt

o a+b b—a _ (ath o B—l o—1
zf“saﬁ ((%) (44 r)) (a+b_t>

(b—a)®® Ja o 2

X[/Tf@+b—@—f@ﬂ®}hzu

a

Thus, the proof of Theorem 8§ is finished. O

Theorem 9. Note that f is a convex mapping on [a,b]. Then, the following double
inequality holds:

a+b\ _ 2P IT(B+1)ob [p at+b\ | a+b
(57) = e b () e (7))

gf(“);f(). (2.13)
Here, 3 >0, o € (0,1] and I is Euler Gamma fuction.

Theorem 10. Assume that f: [a,b] — R is a twice-differentiable mapping such
that there exists real constants m and M so that m < " <M and B > 0, a € (0,1].
The following double inequality

mB(bg_a)2 [é—ﬂ%( +1, B>+$( +1, B)} (2.14)

< e (5o (3] (13)
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gMB(bS_a)z [é—zas ((L—l—l,B) +$<i+1,[&>]

is valid. Here, B is Euler Beta function.

Proof. With the help of the Definition 2, we have

2871 (B4 1) P [B Yo s <a—i—b> L By g (a+b)}
ar 2 ) 2

(b—a)ocB
2T [ 1 (g o il
 p-a®  |T(B) a (t—a)™

R O R A N 10
*r(B)@( o ) b-nY|

With the aid of the change of variables, we acquire

op— ath b—a\% —a)* p-1 _
210+ 1o [FI / ((bz) (t )) flatb-1)

(b—a)™ B) o (—a) @
et -\
* F(B)/a ( o ) (t_a)l—ocdt
B A A o
 (b—a)®® Ja ( o (- )l,a(f(t)+f( +b—1))dr.

From the inequality (2.13), we have

26T B+ 1P [ v, (a+D\ | o ,(atD a+b
o (50) ()] (57) e

2% 1Baf (25" (1 —a)® U0+ flatb—1)—2f (452))
(b—a)® Ja o (t—a) "

dr.

If we take advantage of the facts that

fo -1 (“*b) — [ s

+b
2 2

and
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then we have

t a+b—t
athy " pio)ds+ /m £(5)ds (2.16)

fO+flatb-n 272 = [

a+b—t a+b—t
= /7 f’(s)ds—/M f(a+b—ys)ds

= [f'(s) = f'(a+b—s)]ds.

We also have

N

F6)=flatb=s)= [ 0. (2.17)

a+b—s

By using the condition m < f”(y) < M for all y € [a,b] and with the help of the
equality (2.17), we have

S N S
/ mdy < / f(y)dy < / Mdy,
a+b—s a+b—s a+b—s

which gives
m(2s—a—>b) < f'(s)—f(a+b—s) <M(2s—a—Db).

Since the equality (2.16), we have

m/aa+b_t(2s—a—b) < /a+b_t [f'(s)— f(a+b—s)]ds <M/l:rb_[(25—a—b).

+b a+b
2 2

This implies that

2 2
m<a—;b—t) gf(t)+f(a+b—t)—2f<a+b>SM(a+b—t> . @18

2 2

s . ) 20b-10p [ (259)"~(1—a)® P a1
Multiplying the inequality (2.18) by 0 ( = ) (t—a)” " and then
—a
atb

integrating with respect to ¢ on the interval [a, T] , we obtain
B-1geB 44t [ (b=) _(f_®\ P 2
o201l 5 ((52) —(—a) (t—a) ' (2 )
(b—a)*®? Ja o 2
a —a p-1 a
<20<B*1[30cﬁ ?’((l’z)a—(t—a)oj (f(t)+f(a+b—t)—2f(%b))d

>~ (b—a)aB 4 o (l‘—a)lfa

oB-1goB et [ (b=a)®_ (s _ )@\ P! 2
2B S (5 (- a) (t_a)m(wb_t) 0.
(b—(il)OCB a o 2

t
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Then, we have
B 1o (Lorp)cn(2 1))
< b (15) o ()] (45)

gMBa’S_“)Z [ézax (éJrl,B) +53<i+1,[3)].

Finally, the proof of Theorem 10 is completed. g

Example 3. If the mapping f: [a,b] = [~1,1] — Ris defined as f(¢) =13 +21>+1
such that —2 < f”(¢) < 10 for t € [—1,1]. Under these assumptions, the mid-term of
inequality (2.14) reduces to

S () e () ()

2% PR+ 1)ab
O

CTBE+1)eP [ 1 0 f1—(—a)*\P A2 41
T2 [r<ﬁ>/1( o ) iy

- l(lt)a>ﬁlt3+2t2+1
———d
“rm ) ( oc =
. ay B-1 2
ZQBQB/O (I(H'l)> tilidt
-1 o (t+1) ¢
1 1 2
“[Lan(L g n(2eng)
Consequently, the inequality (2.14) can be written as follows
1 1 2
p[t-an(L16)ra(2+10)]
1 1 2
<2B [B—2$<G+I,B)+$<G+I,B>}

cspt2m(Leg) e (2np)]

P L0+ Pre, £ (0)] - £ (0)
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Theorem 11. Let f: [a,b] — R be a twice-differentiable mapping such that there
exists real constants m and M so that m < f" < M. Then, we establish

mﬁ(bg_a)2 {2@ <;+1,B>—$<i+1,ﬁ)] (2.19)
PAC) ;f(b) B 2aﬁ(;r_(i;;)aﬁ {“*Yaf (a+b) L bye g <a42rb>]

B(b—a)’ 1 2
<M 2B —+1 —Bl—+1
<M —+1B)—B( =+ 1B)|.
where ‘B is Euler Beta function.

Proof. With the help of the inequality (2.13), we obtain
b) 21T+ 1)aP b b
S +1®) (B o [w “f<a+ >+ BY@‘f(i ﬂ (2.20)

2 (b—a)OCB
_ fla)+f(b) 2% 'Bof (559)% (1 — a)" B-1
i 2 (b—a)*® Ja o

O+ fa+b-1)
(1— )1—oc
20LB IBOCB (bT) —(l—a)(x B-1
 (b—a)®® Ja o
L S@+fb)=ft)~flatb—1))
(t—a)' ™
With the aid of the equalities

dr

dr.

== [ rs)as
and
b
1)~ flatb-n= [ flsas,
we have
b t
1@+ 6) = (O +flatb=0)= [ floas— [ fas @21

—/f a+b—sds—/f

= [f(a+b—s) f'(s)] ds.

a
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We also obtain
Flatb-s)- &= o 2.22)
s
By the equality (2.22) and the condition m < f” < M, we get
m(a+b—2s) < f'(s)—f(a+b—s) <M(a+b—2s). (2.23)
From the equality (2.21) and the inequality (2.23), we acquire
/tm(a—l—b—Zs)ds < /t [f'(s) = flla+b—s)]ds < /IM(cH—b—Zs)ds
a a a
so that

m(b—1)(t —a) < f(a)+ f(b) = (f(1) + fla+b—1)) <M(b—t)(t —a). (224)

p-1
L
Multiplying the inequality (2.24) by 2; 1)30%5 ( R ) )4 !"and then

integrating with respect to ¢ on the interval [ , %] we get
p-1

20LB 1 B b—a —
milmB (774)" —t—a)® (t—a)* (b—1t)dt

(b—a)®™ Ja o

a N p-1
<2 ()
o

(b—a)OCB
@) -0~
(t— )
oB— a+b b—a _au’ 371

(a—l—b—t))dt

So that

PO (L) (2 1))

LI PTOAL oy (10) b (220)

B o (L1 p) - a (2]

Hence, the proof of Theorem 11 is completed. O
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Example 4. Let us consider that the function f: [a,b] = [-2,3] — R is described
as f(t) =23 — >+t — 1 such that —24 < f”(¢) < 36 for t € [-2,3]. By these as-
sumptions, the right-side of (2.19) becomes as follows

fl@)+f(b) 27T (B+1)aP [y [ﬁ Yo s (a—l—b) e <a+b>}

2 (b—a)®® 2
DI BRI v () v (3)]

5o (arre) oG]
Finally, the inequality (2.19) can be written as follows
asplon(Le18)-a(2e10)]
<5 o (Gere) -2 (Go0)]
2 n(d) a0

Theorem 12. Let f: [a,b] — R be a differentiable mapping and f € L, [a,b]. If
flla+b—x)> f'(x)forallx € [ atb ] Then, the following Hemite—Hadamard-type
inequality for conformable fractlonal integrals holds

(13) < e (5) o (157)]
S10)

Proof. Since the equalities (2.15) and (2.16), we can write

2081 (B + 1) 0 [p [lﬁ Yo s <a+b> N ﬁYgf<a+b>] _f(a+b)

(b—a)™ 2 2
el () e\
(b—a)“B o (r—a)

x (f()+f(a+b—t <a+b>>dt
p—

20([3 lBa[S a+b (bT) (t— ) 1 _a(x_l
(b—a)(xB ( o (¢ )
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X [/:;bt [f'(s) = f'(a+b—s)]ds| dr

2043 1Baﬁ a+b (b%a)a—(t—a)a B—1 o
(b—a)aﬁ a (04 (t_a)
X /T [f'(a+b—u)— f(u)] ds| dt

>0

)

which presents the first inequality in (2.13).
Likewise, by the equalities (2.20) and (2.21), we establish

fla)+f(b) 2"‘5“1"([”1)0‘ﬁ B

LYOF (b)+ Br‘g%) f(a)

2 ( (42)"
2(XB 1Baﬁ L l— )05 p-1 X
o : (t—a)™
(b azOC
x [f(a) —(f(2) +fa+b—t))]dt
o 15 (e o
= B —a
(b_a)(x[i a (04
t
X V [f'(a+b—s)—f'(s)]ds|dt > 0.
This ends the proof of Theorem 12. 0
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