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PROPERTIES OF SECOND ORDER DIFFERENTIAL EQUATIONS
WITH ADVANCED AND DELAY ARGUMENT

BLANKA BACULIKOVA

Received 20 February, 2023

Abstract. In the paper, we study the bounded and unbounded oscillation of the second-order
differential equations with deviating argument of the form

y′′(t) = p(t)y(τ(t)).

We introduce new monotonicities for the nonoscillatory solutions and apply them to offer new
criteria for elimination of certain types of solutions. The presented results will be supported by
set of examples to confirm our achieved progress in the oscillation theory.
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1. INTRODUCTION

In this paper, we shall study the asymptotic and oscillation behavior of the solu-
tions for half-linear second order differential equations with deviating argument

y′′(t) = p(t)y(τ(t)). (E)

We shall assume that

(H1) p(t) ∈C1([t0,∞)), p(t)> 0,
(H2) τ(t) ∈C1([t0,∞)), τ′(t)> 0, lim

t→∞
τ(t) = ∞.

By a solution of Eq. (E) we mean a function y(t) ∈ C2([Ty,∞)), Ty ≥ t0 which
satisfies Eq. (E) on [Ty,∞). We consider only those solutions y(t) of (E) for which
sup{|y(t)| : t ≥ T}> 0 for all T ≥ Ty. We assume that (E) possesses such a solution.
A solution of (E) is called oscillatory if it has arbitrarily large zeros on [Ty,∞) and
otherwise it is called to be nonoscillatory. An equation itself is said to be oscillatory
if all its solutions are oscillatory.
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Due to linearity of (E) it is sufficient to deal only with positive solutions of (E).
The problem of establishing oscillatory criteria for various types of differential equa-
tions has been a very active research area over the past decades (see [1–12]).

It is known that the equation

y′′(t) = p(t)y(t)

always possesses both positive decreasing and positive increasing solution. The situ-
ation for equation with deviating argument (E) may be different. If we denote by N
the set of all positive solutions of (E), then it has the following decomposition

N = N0 ∪N2,

where the class N0 involves positive decreasing solutions while N2 includes positive
increasing ones.

Koplatadze and Chanturia [10] have shown that for τ(t)≤ t the condition

limsup
t→∞

∫ t

τ(t)
(s− τ(t))p(s)ds > 1 (1.1)

does not allow the presence of positive decreasing solutions. i.e. N0 =∅.
On the other hand, (E) does not possess positive increasing solutions if τ(t) ≥ t

and

limsup
t→∞

∫
τ(t)

t
(τ(t)− s)p(s)ds > 1, (1.2)

that is N2 =∅.
Both criteria (1.1) and (1.2) are based on the standard monotonicities of possible

positive solutions. So, if we intend to refine on above mentioned criteria, we have to
improve these monotonicities. And this is the first aim of this paper. The progress
will be demonstrated via the following couple of differential equations

y′′(t) = p2
∗y(t ±2τ∗)

and
y′′(t) =

p∗
t2 y(λt).

Some attempts on this direction have been made by several authors (see e.g. [6–8])
included the present one [3–5]. But there is no one general monotonicity formula
that would fully cover classes N0 and N2 of (E), respectively, There are only partial
formulas separately distinguish between p(t) = p∗ and p(t) = p∗/t2.

The second aim of this paper is to provide one general monotonicity formula for
all possible functions p(t). To achieve this, we introduce new technique for invest-
igation of properties of nonoscillatory solutions. In generally, when establishing de-
sired monotonicity, the authors always try to decrease the order of derivative, but we
proceed in opposite direction and we increase order of derivative of nonoscillatory
solution. The third goal of the paper is to imply new monotonicities to essentially
improve criteria (1.1) and (1.2).
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2. MAIN RESULTS

For positive increasing solutions of (E) we can improve the monotonicity as fol-
lows.

Lemma 1. Let ∫
∞

t0
sp(s)ds = ∞. (2.1)

Assume that y(t) ∈ N2. Then

y(t)
t

is increasing
(

i.e.,
y(t)

t
↑
)
. (2.2)

Proof. Assume that y(t) is positive increasing solution of (E). It is easy to see that(
t2
(

y(t)
t

)′)′

= t p(t)y(τ(t)). (2.3)

An integration of (2.3) from t0 to t in view of (2.1) yields

t2
(

y(t)
t

)′
= k+

∫ t

t0
sp(s)y(τ(s))ds

≥ k+ y(τ(t0))
∫ t

t0
sp(s)ds → ∞ as t → ∞.

Hence

t2
(

y(t)
t

)′
> 0

for all t large enough. □

To simplify our notation we introduce the following triple of functions

α2(t) =
p′(t)
p(t)

+
τ′(t)
τ(t)

∫
τ(t)

t
p(s)τ(s)ds,

β
′
2(t) = α2(t), γ2(t) = p(t)e−β2(t).

Lemma 2. Let (2.1) hold and τ(t)≥ t. Assume that y(t) ∈ N2. Then

γ2(t)y(τ(t)) ↑ .

Proof. Assume that (E) possesses a positive increasing solution y(t), i.e y(t)∈ N2.
Thanks to assumptions p(t),τ(t) ∈C1([t0,∞]), we can differentiate (E), which leads
to

y′′′(t) = p′(t)y(τ(t))+ p(t)τ′(t)y′(τ(t)). (2.4)
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On the other hand, integrating (E) from t to τ(t) we are lead to

y′(τ(t)) = y′(t)+
∫

τ(t)

t
p(s)τ(s)

y(τ(s))
τ(s)

ds

≥ y(τ(t))
τ(t)

∫
τ(t)

t
p(s)τ(s)ds,

(2.5)

where we used (2.2). By combining inequalities (2.4) and (2.5), we conclude that

y′′′(t)≥ y(τ(t))
(

p′(t)+ p(t)
τ′(t)
τ(t)

∫
τ(t)

t
p(s)τ(s)ds

)
,

which in view of (E) means that

y′′′(t)≥ α2(t)y′′(t).

Consequently, (
e−β2(t)y′′(t)

)′
≥ 0

and we conclude that e−β2(t)y′′(t) is increasing, which is in view of (E) equivalent to
γ2(t)y(τ(t)) is increasing. □

Remark 1. The new monotonicity presented in Lemma 2 is in closed form for all
possible functions p(t) and as compared with previous results it does not require to
distinguish whether p(t) = p∗ or p(t) = p∗/t2 or something else. It is useful to notice
that technique used in the proof of Lemma 2 is new and unique.

Having established new monotonicity we are prepared to improve criterion (1.2).

Theorem 1. Let τ(t)≥ t and (2.1) hold. If

limsup
t→∞

γ2(t)
∫

τ(t)

t

p(s)(τ(t)− s)
γ2(s)

ds > 1, (2.6)

then N2 =∅ for (E).

Proof. We argue by contradiction. Assume that (E) possesses an eventually pos-
itive increasing solution y(t). Integrating (E) from t to u and using the monotonicity
of γ2(t)y(τ(t)), we obtain

y′(u) = y′(t)+
∫ u

t
p(s)y(τ(s))ds ≥ γ2(t)y(τ(t))

∫ u

t

p(s)
γ2(s)

ds.

Integrating once more from u to t, we get

y(u)≥ γ2(t)y(τ(t))
∫ u

t

∫ x

t

p(s)
γ2(s)

dsdx = γ2(t)y(τ(t))
∫ u

t

p(s)(u− s)
γ2(s)

ds.

Setting u = τ(t), we have

y(τ(t))≥ y(τ(t))γ2(t)
∫

τ(t)

t

p(s)(τ(t)− s)
γ2(s)

ds,
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which contradicts to condition (2.6) and we conclude, that class N2 is empty. □

The above theorem can be reformulated in term of unbounded oscillation.

Theorem 2. Let τ(t)≥ t and (2.1), (2.6) hold. Then every unbounded solution of
(E) is oscillatory.

If 1/γ2(t) is increasing, then it is easy to see that (1.2) implies (2.6). In the follow-
ing couple of illustrative examples we will demonstrate the real progress.

Example 1. We consider advanced differential equation with constant coefficients

y′′(t) = p2
∗y(t +2τ∗), p∗ > 0, τ∗ > 0. (Ex1)

It is easy to verify that criterion (1.2) guarantees N2 =∅ provided that

p∗τ∗ >
1√
2
≈ 0.707106.

On the other hand, simple calculation yields

α2(t) = 2p2
∗τ∗+2p2

∗τ
2
∗

1
t +2τ∗

.

Thus
β2(t) = 2p2

∗τ∗t +2p2
∗τ

2
∗ ln(t +2τ∗)

and

γ2(t) = p2
∗

e−2p2
∗τ∗t

(t +2τ∗)2p2
∗τ2

∗

and we conclude that γ2(t)y(t +2τ0) is increasing. But then also

γ̃2(t)y(t +2τ∗) ↑ with γ̃2(t) = e−2p2
∗τ∗t .

The reason for introducing function γ̃2(t) is the fact that it is more acceptable than
γ2(t) because the term (t + 2τ0)

−2p2
∗τ2

∗ does not bring any progress for monotonicity
of y(t) ∈ N2.

Condition (2.6) with γ2(t) = γ̃2(t) reduces to

e4p2
∗τ2

∗ > 8p2
∗τ

2
∗+1. (2.7)

By standard numerical methods we can verify that the inequality

ex > 2x+1, x > 0

is satisfied for all x > 1.256431 and consequently (2.7) holds true provided that

p∗τ∗ >

√
1.256431

4
≈ 0.560453.

Consequently, our progress is significant.
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Example 2. We consider the advanced Euler differential equation

y′′(t) =
p∗
t2 y(λt), (Ex2)

with p∗ > 0 and λ > 1. According to Koplatadze and Chanturia’s criterion (1.2), the
class N2 =∅ for Eq. (Ex2) provided that

p∗(λ−1− lnλ)> 1. (2.8)

On the other hand, simple calculation yields

α2(t) =
−2+ p∗λ lnλ

t
.

Therefore,
β2(t) = (−2+ p∗λ lnλ) ln t and γ2(t) = t−p∗λ lnλ.

Now, some necessary calculation yields that (2.6) takes the form

p∗

(
λp∗λ lnλ −λ

p∗λ lnλ−1
− λp∗λ lnλ −1

p∗λ lnλ

)
> 1. (2.9)

To see our progress let us set e.g. λ = e. Then (2.8) takes the form

p∗ >
1

e−2
≈ 1.392211,

while (2.9) reduces to

(ep∗e − e) p∗e− (ep∗e −1)(p∗e−1)
p∗e−1

> e. (2.10)

It easy to verify that the inequality

(ex − e)x− (ex −1)(x−1)
x−1

> e, x > 1

holds for all x > 1.911063. Thus (2.10) is satisfied for

p∗ >
1.911063

e
≈ 0.703041.

Our progress is outstanding.

The next considerations are intended to improve criterion (1.1). We define triple
of functions as follows.

α0(t) = − p′(t)
p(t)

+ τ
′(t)

∫ t

τ(t)
p(s)ds,

β
′
0(t) = α0(t), γ0(t) = p(t)eβ0(t).

(2.11)

Lemma 3. Let τ(t)≤ t. Assume that y(t) ∈ N0. Then

γ0(t)y(τ(t)) ↓ .
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Proof. Assume that (E) possesses a positive decreasing solution y(t), i.e y(t)∈N0.
Proceeding exactly as in the proof of Theorem 2 we are led to (2.4). On the other
hand, an integration (E) from τ(t) to t yields

−y′(τ(t)) =−y′(t)+
∫ t

τ(t)
p(s)y(τ(s))ds ≥ y(τ(t))

∫ t

τ(t)
p(s)ds. (2.12)

We conclude

y′′′(t)≤ y(τ(t))
(

p′(t)− p(t)τ′(t)
∫ t

τ(t)
p(s)ds

)
,

by combining inequalities (2.4) and (2.12). Taking (E) into account, we obtain

y′′′(t)+α0(t)y′′(t)≤ 0.

Consequently, (
eβ0(t)y′′(t)

)′
≤ 0

and one can see that eβ0(t)y′′(t) is decreasing, which is in view of (E) equivalent to
γ0(t)y(τ(t)) is decreasing. □

Theorem 3. Let τ(t)≤ t. If

limsup
t→∞

γ0(t)
∫ t

τ(t)

p(s)(s− τ(t))
γ0(s)

ds > 1, (2.13)

then N0 =∅ for (E).

Proof. We admit that N0 ̸= ∅ which means that (E) possesses an eventually pos-
itive decreasing solution y(t). Integrating (E) from u to t and using the monotonicity
of γ0(t)y(τ(t)), we obtain

−y′(u) =−y′(t)+
∫ t

u
p(s)y(τ(s))ds ≥ γ0(t)y(τ(t))

∫ t

u

p(s)
γ0(s)

ds.

Integrating once more from u to t, we have

y(u)≥ γ0(t)y(τ(t))
∫ t

u

∫ t

x

p(s)
γ0(s)

dsdx = γ0(t)y(τ(t))
∫ t

u

p(s)(s−u)
γ0(s)

ds.

Setting u = τ(t), we have

y(τ(t))≥ y(τ(t))γ0(t)
∫ t

τ(t)

p(s)(s− τ(t))
γ0(s)

ds,

which contradicts to condition (2.13) and we deduce that class N0 is empty. □

We provide an alternative formulation of the previous theorem.

Theorem 4. Let τ(t) ≤ t and (2.13) hold. Then every bounded solution of (E) is
oscillatory.

We again support our results by couple of illustrative examples.
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Example 3. We consider retarded differential equation with constant coefficients

y′′(t) = p2
∗y(t −2τ∗), p∗ > 0, τ∗ > 0. (Ex3)

By (1.1) the class N0 =∅ provided that

p∗τ∗ >
1√
2
≈ 0.707106.

On the other hand,

α0(t) = 2p2
∗τ∗, β0(t) = 2p2

∗τ∗t, γ0(t) = p2
∗e2p2

∗τ∗t .

Consequently condition (2.13) reduces to

e4p2
∗τ2

∗ > 8p2
∗τ

2
∗+1. (2.14)

Proceeding exactly as in Example 1 we see that (2.14) holds if

p∗τ∗ >

√
1.256431

4
≈ 0.560453.

Example 4. Consider delay Euler differential equation

y′′(t) =
p∗
t2 y(λt), (Ex4)

with p∗ > 0 and λ ∈ (0,1). By (1.1), the class N0 =∅ for Eq. (Ex4) provided that

p∗(λ−1− lnλ)> 1

which for λ = 1/e takes the form

p∗ > e = 2.718281.

On the other hand,

α0(t) =
2+ p∗(1−λ)

t
, β0(t) = (2+ p∗(1−λ)) ln t, γ0(t) = p∗t p∗(1−λ).

Now, (2.13) takes the form

p∗

(
λ−p∗(1−λ)−1

p∗(1−λ)
− λ−p∗(1−λ)−λ

1+ p∗(1−λ)

)
> 1

which is equivalent to

λ
−p∗(1−λ) > 2+2p∗(1−λ)−2λp∗(1−λ)−λ. (2.15)

We denote x = p∗(1−λ) and set λ = 1/e.Then (2.15) becomes algebraic inequality

ex > 2+2x−2e−1x− e−1, x > 0

which holds true for all x > 1.110604 and so we deduce that

p∗ >
1.110604
1− e−1 ≈ 1.756950.

Our progress is relevant.
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3. EXTENSION

From our previous results it is natural to expect that there will be no nonoscillatory
solution, or equivalently all solutions will be oscillatory for certain differential equa-
tions involving both advanced and delayed arguments. The purpose of this section is
to show that this is indeed for

y′′(t) = p(t)y(τ(t))+q(t)y(σ(t)), (E∗)

where p(t),q(t),τ(t),σ(t) obey the corresponding conditions presented in (H1) and
(H2) and γ0(t) is defined by (2.11) with p(t) and τ(t) replaced by q(t) and σ(t),
respectively.

Theorem 5. Let τ(t)≥ t and (2.1), (2.6) hold. Moreover, assume that σ(t)≤ t and

limsup
t→∞

γ0(t)
∫ t

σ(t)

q(s)(s−σ(t))
γ0(s)

ds > 1,

then (E∗) is oscillatory.
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