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Abstract. In this paper, we investigate the existence of positive solution as well as the unique-
ness results for a fractional order differential equation involving the Caputo fractional derivative
and the Riemann-Liouville fractional derivative. First of all, we show the existence and unique-
ness of the positive solution by means of the fixed point theory, namely, Banach’s contraction
Principle. Second of all, we convert the posed problem to a sum of two integral operators, then
we apply Kronelskii’s fixed point theorem to conclude the existence of nontrivial solutions. As
applications, we present examples for the demonstration of our main results.
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1. INTRODUCTION

Fractional calculus is an extension of classical calculus and deals with the gener-
alization of integration and differentiation to an arbitrary real order. Boundary value
problems for Caputo fractional differential equations, Riemann-Liouville fractional
differential equations and mixed fractional differential equations of great importance
for the researches due to their applications, such as physics, chemistry, probability,
many other branches of engineering. There has been a noticeable development in the
study of fractional differential equations in recent years, see the books of Kilbas et
al. [6], Podlubny [17], Samko et al. [18] and Miller et al. [15] are mostly cited for
the theory and applications of fractional calculus.

The existence of positive solutions for fractional-order nonlinear boundary value
problems has been studied by numerous authors by using the fixed-point theorem
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in cones. To identify a few, we refer the reader to [1, 4, 5, 9, 10, 12, 20, 21] and the
references therein. Some authors investigated the existence of solutions for a class
of mixed fractional differential equations by using different methods. In [2], Agraval
presented the mixed differential equation involving both the Caputo and the Riemann-
Liouville fractional derivatives. In [3], Blaszczyk presented the numerical solutions
of the mixed boundary value problem. For some interesting results on mixed frac-
tional boundary value problems we refer the literature [8, 11, 12, 14, 16].

In [19], Song and Cui concerned the existence of solutions of nonlinear mixed
fractional differential equation with the integral boundary value problem under res-
onance {

cDα
1−Dβ

0+u(t) = f (t,u(t),Dβ+1
0+ u(t),Dβ

0+u(t)), t ∈ (0,1),
u(0) = u

′
(0) = 0, u(1) =

∫ 1
0 u(t)dA(t),

where 1 < α ≤ 2, 0 < β ≤ 1, f ∈C([0,1]×R3,R).
Liu et al. [13] investigated the existence of the unique nontrivial solution for mixed

fractional differential equation{
cDα

1−Dβ

0+x(t)+ f (t,x(t)) = b, t ∈ (0,1),
x(0) = 0, x

′
(1) = Dβ

0+x(1) = 0,

where 0 < α ≤ 1, 1 < β ≤ 2 and α+β > 2. Here f : [0,1]× (−∞,∞)→ (−∞,∞) is
continuous, and b > 0 is a constant real number.

Guezane et al.[8] investigated the following mixed fractional boundary value prob-
lem {

−cDα

0+Dβ

0+u(t)+ f (t,u(t)) = 0, t ∈ (0,1),
u(0) = u

′
(0) = u(1) = 0,

where 0 < α ≤ 1, 1 < β ≤ 2. They used Krasnoselskii’s fixed point theorem to prove
the existence of nontrivial solution.

Motivated by the above papers, we consider the nonlinear mixed fractional differ-
ential equation

Dα

0+
cDβ

0+u(t)+ f (t,u(t)) = 0, t ∈ (0,1),
with the multi-point fractional boundary conditions:

u(0) = u
′
(0) = cDβ

0+u(0) = 0,

Dγ

0+u(1) =
m−2

∑
i=1

ηiD
γ

0+u(τi),

where 1 < α,β ≤ 2, γ < α+β−1, Dα

0+ denotes the Riemann-Liouville derivative of
order α, cDβ

0+ denotes the Caputo derivative of order β, 0 < τ1 < τ2 < .. . < τm−2 < 1,
0 < ηi < 1 for i = 1,2, . . . ,m−2, f ∈C([0,1]× [0,∞), [0,∞)).

The organization of this paper is as follows. In Section 2 and Section 3, we provide
some definitions and preliminary lemmas which are key tools for our main result. In
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Section 4, we give and prove our main results. We give examples to illustrate how
the main results can be used in practice.

2. PRELIMINARIES AND LEMMAS

In order to assert our main results, we assemble some necessary definitions and
lemmas from the fractional calculus, which can be found in [6, 17, 18].

Definition 1. The fractional integral of order α > 0 of a function y : (0,+∞)→ R
is given by

Iα

0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds,

provided that the right side is pointwise defined on (0,∞), where

Γ(α) =
∫ +∞

0
e−xxα−1dx.

Definition 2. For a continuous function y : (0,+∞)→R, the Caputo derivative of
fractional order α > 0 is defined as

Dα

0+y(t) =
1

Γ(n−α)

∫ t

0
(t − s)n−α−1y(s)ds,

where n = [α]+1, provided that the right side is pointwise defined on (0,+∞).

Definition 3. For a continuous function y : (0,+∞)→ R, the Riemann-Liouville
derivative of fractional order α > 0 is defined as

Dα

0+y(t) =
1

Γ(n−α)

(
d
dt

)n ∫ t

0
(t − s)n−α−1y(s)ds,

where n = [α]+1, provided that the right side is pointwise defined on (0,+∞).

Lemma 1. Let α > 0, then

Iα

0+
cDα

0+u(t) = u(t)+ c0 + c1t + c2t2 + ...+ cn−1tn−1

for some ci ∈ R, i = 1, ...,n, n = [α]+1.

Lemma 2. Let α > 0, then

Iα

0+Dα

0+u(t) = u(t)+ c1tα−1 + c2tα−2 + ...+ cntα−n

for some ci ∈ R, i = 1, ...,n, n = [α]+1.
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3. EXISTENCE OF NONTRIVIAL POSITIVE SOLUTIONS

We consider the fractional boundary value problem with mixed derivative given as
follows. 

Dα

0+
cDβ

0+u(t)+ f (t,u(t)) = 0, t ∈ (0,1),
u(0) = u

′
(0) = cDβ

0+u(0) = 0,

Dγ

0+u(1) =
m−2

∑
i=1

ηiD
γ

0+u(τi),

(3.1)

where 1 < α,β ≤ 2, γ < α+β−1, Dα

0+ denotes the Riemann-Liouville derivative of
order α, cDβ

0+ denotes the Caputo derivative of order β, 0 < τ1 < τ2 < .. . < τm−2 < 1,
0 < ηi < 1 for i = 1,2, . . . ,m−2, f ∈C([0,1]× [0,∞), [0,∞)).

Throughout this paper we assume that the following conditions hold:

(H1) 0 <
m−2

∑
i=1

ηiτ
α+β−γ−1
i < 1,

(H2) f : [0,1]× [0,∞)→ [0,∞) is a continuous function.

Lemma 3. If h ∈ C [0,1], the fractional boundary value problem
Dα

0+
cDβ

0+u(t)+h(t) = 0, t ∈ (0,1),
u(0) = u

′
(0) = cDβ

0+u(0) = 0,

Dγ

0+u(1) =
m−2

∑
i=1

ηiD
γ

0+u(τi),

(3.2)

has an integral expression

u(t) =
∫ 1

0
G(t,s)h(s)ds (3.3)

where
G(t,s) = G1(t,s)+G2(t,s) (3.4)

and

G1(t,s) =
1

Γ(α+β)

{
tα+β−1(1− s)α+β−γ−1 − (t − s)α+β−1, 0 ≤ s ≤ t ≤ 1,

tα+β−1(1− s)α+β−γ−1, 0 ≤ t ≤ s ≤ 1,
(3.5)

G2(t,s) =
∑

m−2
i=1 ηitα+β−1

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]×
{

(τi(1− s))α+β−γ−1 − (τi − s)α+β−γ−1, 0 ≤ s ≤ τi ≤ 1,
(τi(1− s))α+β−γ−1, 0 ≤ τi ≤ s ≤ 1.

(3.6)

Proof. According to Lemma 2, we can obtain that
cDβ

0+u(t) =−Iα

0+h(t)+ c1tα−1 + c2tα−2.
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We assume that the boundary conditions are satisfied. Firstly, using cDβ

0+u(0) = 0,
we have c2 = 0. We may apply Lemma 1, and find that

u(t) =−Iα+β

0+ h(t)+ c1Iβ

0+tα−1 +d1 +d2t.

From u(0) = u
′
(0) = 0 conditions, d1 = d2 = 0 is found. From condition

Dγ

0+u(1) =
m−2

∑
i=1

ηiD
γ

0+u(τi),

we find that

c1 =

∫ 1

0
(1− s)α+β−γ−1h(s)ds−

m−2

∑
i=1

ηi

∫
τi

0
(τi − s)α+β−γ−1h(s)ds

Γ(α)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ,

substituting this value of c1, we have

u(t) =
−1

Γ(α+β)

∫ t

0
(t − s)α+β−1h(s)ds+

tα+β−1

Γ(α+β)
·
∫ 1

0 (1− s)α+β−γ−1h(s)ds[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]
− ∑

m−2
i=1 ηitα+β−1[

∫
τi
0 (τi − s)α+β−γ−1h(s)ds]

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] .

Now let’s create the Green function:

u(t) =
−1

Γ(α+β)

∫ t

0
(t − s)α+β−1h(s)ds+

tα+β−1

Γ(α+β)

∫ 1

0
(1− s)α+β−γ−1h(s)ds

+
tα+β−1

∑
m−2
i=1 ηiτ

α+β−γ−1
i

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]∫ 1

0
(1− s)α+β−γ−1h(s)ds

− ∑
m−2
i=1 ηitα+β−1

[∫
τi
0 (τi − s)α+β−γ−1h(s)ds

]
Γ(α+β)

[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]
=

−1
Γ(α+β)

∫ t

0
(t − s)α+β−1h(s)ds+

tα+β−1

Γ(α+β)

∫ t

0
(1− s)α+β−γ−1h(s)ds

+
tα+β−1

Γ(α+β)

∫ 1

t
(1− s)α+β−γ−1h(s)ds

+
tα+β−1

∑
m−2
i=1 ηiτ

α+β−γ−1
i

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]∫ 1

0
(1− s)α+β−γ−1h(s)ds



296 N. A. HAMAL

− ∑
m−2
i=1 ηitα+β−1[

∫
τi
0 (τi − s)α+β−γ−1h(s)ds]

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]
=

∫ 1

0
G1(t,s)h(s)ds+

tα+β−1
∑

m−2
i=1 ηiτ

α+β−γ−1
i

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]
∫ 1

0
(1− s)α+β−γ−1h(s)ds− ∑

m−2
i=1 ηitα+β−1[

∫
τi
0 (τi − s)α+β−γ−1h(s)ds]

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]
=

∫ 1

0
G1(t,s)h(s)ds+

tα+β−1
∑

m−2
i=1 ηi

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]
×
[∫ 1

0
τ

α+β−γ−1
i (1− s)α+β−γ−1h(s)ds−

∫
τi

0
(τi − s)α+β−γ−1h(s)ds

]
=

∫ 1

0
G1(t,s)h(s)ds+

∫ 1

0
G2(t,s)h(s)ds

=
∫ 1

0
G(t,s)h(s)ds.

The functions G(t,s), G1(t,s) and G2(t,s) are defined in (3.4), (3.5) and (3.6),
respectively. □

Lemma 4. The function G1(t,s) defined by (3.5) satisfies the following properties:
(i) G1(t,s) is a continuous function and G1(t,s)≥ 0 for any (t,s)∈ [0,1]× [0,1],

(ii) G1(t,s)≤
1

Γ(α+β)
for any (t,s) ∈ [0,1]× [0,1].

Proof. (i) It is obvious.
(ii) Let s ≤ t.

G1(t,s) =
tα+β−1(1− s)α+β−γ−1 − (t − s)α+β−1

Γ(α+β)
≤ tα+β−1(1− s)

Γ(α+β)
≤ 1

Γ(α+β)
.

Let t ≤ s.

G1(t,s) =
tα+β−1(1− s)α+β−γ−1

Γ(α+β)
≤ 1

Γ(α+β)
.

In both cases, we obtain G1(t,s)≤
1

Γ(α+β)
. □

Lemma 5. The function G2(t,s) defined by (3.6) satisfies the following properties:
(i) G2(t,s) is a continuous function and G2(t,s)≥ 0 for any (t,s)∈ [0,1]× [0,1],

(ii) G2(t,s)≤
∑

m−2
i=1 ηiτ

α+β−γ−1
i

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] for any (t,s) ∈ [0,1]× [0,1].
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Proof. (i) It is obvious.
(ii) Let s ≤ τi.

G2(t,s) =
∑

m−2
i=1 ηitα+β−1

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ((τi(1− s))α+β−γ−1 − (τi − s)α+β−γ−1
)

≤ ∑
m−2
i=1 ηi

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]τ
α+β−γ−1
i .

Let τi ≤ s.

G2(t,s) =
∑

m−2
i=1 ηitα+β−1

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ((τi(1− s))α+β−γ−1
)

≤ ∑
m−2
i=1 ηi

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]τ
α+β−γ−1
i .

The following inequality is obtained from both cases:

G2(t,s)≤
∑

m−2
i=1 ηi

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]τ
α+β−γ−1
i .

□

Finally, by means of equation (3.4), we get:

Lemma 6. The G(t,s) function defined by (3.6) provides the following inequality:

G(t,s)≤ 1

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

]
for any (t,s) ∈ [0,1]× [0,1].

Proof. This Lemma is obvious from Lemma 4 and Lemma 5. □

4. FIXED POINT THEOREMS

The following fixed point theorems are fundamental and essential to the proofs our
main results.

Theorem 1 (Banach contraction mapping principle, [10]). Let (X ,d) be a nonempty
complete metric space, and let T : X → X be a contraction, i.e., there exists a number
0 < ρ < 1 such that d(T x,Ty) ≤ ρd(x,y). Then the operator T has a unique fixed
point x∗ ∈ X.
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Theorem 2 (Krasnoselskii’s fixed point theorem[7]). Let M be a closed, convex,
bounded and nonempty subset of a Banach space E. Let A,B be the operators such
that

(i) A is compact and continuous,
(ii) B is a contraction mapping,

(iii) Ax+By ∈ M whenever x,y ∈ M.

Then there exists z ∈ M such that z = Az+Bz.

Theorem 3. Suppose that f : [0,1]× [0,∞)→ [0,∞) is a continuous function, for
all t ∈ [0,1] and f (t,0) is not identically null on [0,1].

(H3) For all t ∈ [0,1] and u,v ∈ [0,∞), we have

| f (t,u)− f (t,v)| ≤ σ(t) · |u− v|,

where σ(t) ∈C([0,1]; [0,∞)). Then, there exists a unique positive solution for prob-
lem (3.1) under the following condition r1 < 1, where

r1 =
1

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ·σ∗ and σ
∗ =

∫ 1

0
σ(s)ds.

Proof. We consider the Banach space E =C[0,1] with the maximum norm. Define
T : E → E by

(Tu)(t) =
∫ 1

0
G(t,s) f (s,u(s))ds

and setting sup0≤t≤1 f (t,0) = F .
We consider the following set

Br = {u ∈ E :∥ u ∥≤ r},

where

r ≥ r2

1− r1
, with r2 =

1

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ·F.
For each t ∈ [0,1] and u ∈ Br, we have

| (Tu)(t) | ≤

 1
Γ(α+β)

+
∑

m−2
i=1 ηi

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] · τα+β−γ−1
i


·
[∫ 1

0
| f (s,u(s))− f (s,0) | ds

]
+F

≤ 1

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ·[∫ 1

0
σ(s)ds· ∥ u ∥+F

]
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=
1

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] · [σ∗· ∥ u ∥+F ] .

This means that ∥ Tu ∥≤ r. Therefore T Br ⊆ Br. Next, we prove that T is a contrac-
tion mapping for u,v ∈ Br . We have

| (Tu)(t)− (T v)(t) | ≤
∫ 1

0
G(t,s)· | f (s,u(s))− f (s,v(s)) | ds

≤ 1

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ·∫ 1

0
σ(s) | u(s)− v(s) | ds

≤ 1

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ·σ∗· ∥ u− v ∥ .

Since r1 < 1, T is a contraction. Therefore, by Theorem 1, problem (3.1) has a unique
positive solution. □

Example 1. Let be α =
18
11

, β =
15
11

, γ =
1
2

, m = 3, η1 = 1 and τ1 =
1
2

for the
boundary value problem (3.1).

Consider the following boundary value problem:
D

18
11
0+

cD
15
11
0+u+

t3

400
.(1+u) = 0, t ∈ (0,1),

u(0) = u
′
(0) = cD

15
11
0+u(0) = 0,

D
1
2
0+u(1) = D

1
2
0+u(1

2),

where σ(t) =
t3

400
and f (t,u) =

t3

400
.(1+u).

We obtain σ∗ =
1

1600
and r1 ∼= 0,000483 by some simple calculations. In this case

all the conditions of Theorem 3 are satisfied. Hence, by Theorem 3, we prove that
the boundary value problem has one positive solution.

Theorem 4. Assume that (H1)-(H3) hold and f : [0,1]× [0,∞)→ [0,∞) is a con-
tinuous function. Furthermore, we suppose

(H4) f (t,u)≤ θ(t), for all (t,u) ∈ [0,1]× [0,∞) and θ ∈C([0,1],R+).
Then problem (3.1) has at least one positive solution on [0,1] if R < 1, where

R =
∑

m−2
i=1 ηiτ

α+β−γ−1
i

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ·σ∗.

Proof. We consider the closed ball

Bρ = {u ∈ E :∥ u ∥≤ ρ}
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with fixed radius ρ:

ρ ≥ ∥ θ ∥

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] .
We define the operators T1 and T2 on Bρ as

(T1u)(t) =
∫ 1

0
G1(t,s) f (s,u(s))ds,

(T2u)(t) =
∫ 1

0
G2(t,s) f (s,u(s))ds.

For u,v ∈ Bρ, we have

(T1)u)(t)≤
∥ θ ∥

Γ(α+β)
,

(T2v)(t)≤ ∑
m−2
i=1 ηiτ

α+β−γ−1
i · ∥ θ ∥

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] .
Consequently,

∥ T1u+T2v ∥≤ ∥ θ ∥

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] .
Then T1u+T2v ∈ Bρ.

In the following, we prove that T2 is a contraction.

| (T2u)(t)− (T2v)(t) | ≤
∫ 1

0
G2(t,s) | f (s,u(s))− f (s,v(s)) | ds

≤ ∑
m−2
i=1 ηiτ

α+β−γ−1
i

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ∫ 1

0
σ(s) | u(s)− v(s) | ds

≤ ∑
m−2
i=1 ηiτ

α+β−γ−1
i

Γ(α+β)
[
1−∑

m−2
i=1 ηiτ

α+β−γ−1
i

] ·σ∗· ∥ u− v ∥ .

Since R < 1, we conclude that T2 is a contraction. Now, we show that T1 is a com-
pletely continuous operator. Continuity of f implies that the operator T1 is continu-
ous. Also, T1 is uniformly bounded on Bρ as

(T1u)(t)≤ ∥ θ ∥
Γ(α+β)

.
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Now, we prove the compactness of operator (T1u). We have for u ∈ Bρ, t1, t2 ∈ [0,1]
and t1 < t2.∣∣(T1u)(t1)− (T1u)(t2)

∣∣≤ ∫ 1

0
| G1(t1,s)−G1(t2,s) | · | f (s,u(s)) | ds

≤ ∥ θ ∥
Γ(α+β)

∣∣∣∣∫ t1

0
(tα+β−1

1 (1− s)α+β−γ−1 − (t1 − s)α+β−1

− (tα+β−1
2 (1− s)α+β−γ−1 +(t2 − s)α+β−1))ds

+
∫ t2

t1
(tα+β−1

1 (1− s)α+β−γ−1 − tα+β−1
2 (1− s)α+β−γ−1

+(t2 − s)α+β−1)ds+
∫ 1

t2
(tα+β−1

1 (1− s)α+β−γ−1

− tα+β−1
2 (1− s)α+β−γ−1)ds

∣∣∣∣.
So, | T1u(t1)− T1u(t2) |→ 0 tends to zero when t1 → t2, thus T1 is relatively com-
pact on Bρ. Hence, by the Arzela Ascoli theorem, T1 is compact on Bρ. Thus, by
Krasnoselskii’s fixed point theorem, problem (3.1) has one positive solution in E. □

Example 2. Let be α =
15
11

, β =
18
11

, γ =
1
2

, m = 3, η1 = 1 and τ1 =
1
2

for the
boundary value problem (3.1).

Consider the following boundary value problem:
D

15
11
0+

cD
18
11
0+u+

t3

600
.

u
1+u

= 0, t ∈ (0,1)

u(0) = u
′
(0) = cD

18
11
0+u(0) = 0,

D
1
2
0+u(1) = D

1
2
0+u(1

2),

where σ(t) =
t3

600
, f (t,u) =

t3

600
.

u
1+u

and θ(t) =
t3

600
.

Through calculation, we get σ∗ =
1

2400
and R ∼= 0,000113. We conclude that all

the assumptions of Theorem 4 are verified. Thus, problem has at least one positive
solution.

REFERENCES

[1] M. I. Abbas and M. Alessandra Ragusa, “Solvability of Langevin equations with two Hadamard
fractional derivatives via Mittag–Leffler functions,” Applicable Analysis, vol. 101, no. 9, pp. 3231–
3245, 2022, doi: 10.1080/00036811.2020.1839645.

[2] O. Agrawal, “Fractional variational calculus and the transversality conditions,” Journal of
Physics A: Mathematical and General, vol. 39, no. 33, p. 10375, 2006, doi: 10.1088/0305-
4470/39/33/008.

http://dx.doi.org/10.1080/00036811.2020.1839645
http://dx.doi.org/10.1088/0305-4470/39/33/008
http://dx.doi.org/10.1088/0305-4470/39/33/008


302 N. A. HAMAL

[3] T. Blaszczyk, “A numerical solution of a fractional oscillator equation in a non-resisting medium
with natural boundary conditions,” Romanian Reports in Physics, vol. 67, no. 2, pp. 350–358,
2015.

[4] L. Ibnelazyz, K. Guida, S. Melliani, and K. Hilal, “On a nonlocal multipoint and integral boundary
value problem of nonlinear fractional integrodifferential equations,” Journal of Function Spaces,
vol. 2020, 2020, 8891736, doi: 10.1155/2020/8891736.

[5] W. Jiang, B. Wang, and Z. Wang, “The existence of positive solutions for multi-point boundary
value problems of fractional differential equations,” Physics Procedia, vol. 25, pp. 958–964, 2012,
doi: 10.1016/j.phpro.2012.03.184.

[6] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential
equations, ser. North-Holland Math. Stud. Amsterdam: Elsevier, 2006, vol. 204.

[7] M. A. Krasnosel’skii, “Two remarks on the method of successive approximations,” Uspekhi
matematicheskikh nauk, vol. 10, no. 1, pp. 123–127, 1955.
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