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Abstract. In this article, the boundedness of B—maximal My, B—singular integral 7y and B—
maximal singular integral Zy operators on B—local Morrey-Lorentz spaces are obtained with the
use of rearrangement inequalities and Hardy inequality.
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1. INTRODUCTION

Lorentz spaces have first been introduced by G. G. Lorentz and Lorentz spaces
are very useful in the theory of interpolation. These spaces are Banach spaces and
generalizations of Lebesgue spaces. The Lorentz space L, ,(R") is known as the set
all of measurable functions f such that

11
11|z, @y == lEP ™0 (@)l 00) <00 0< p,g < oo
Here f* denotes non-increasing rearrangement of f and defined by
fr@) =inf{A>0: {yeR": |f(y)| >} <1}, 1€ (0,00).

Functional || - [|z,, is a norm if and only if | <g < porp=g=oco. If p=g = oo,
then Lo, o(R") = L.(R"). One can easily see that L, ,(R") =L,(R") and L, »(R") =
WL,(R"). Itis clear that L, , C L, C L, C WL, for0 < g < p < g <r < eo. For
more details, we refer to [8,22,23].

On Lorentz spaces, boundedness problem of classical singular integral operators
and singular integral operators related to Laplace-Bessel differential operator
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have been studied by many researchers [1, 3, 5, 15-19, 22, 23,26, 29, 30]. Also,
boundedness of singular integral operators related to Laplace-Bessel differential op-
erator defined on variable exponent Lorentz spaces have been obtained by Aykol and
Kaya [7]. Convolution type operators are generated by generalized shift operator

Tyf C’Yk/ / thl oy (xk7yk)(xk7x//_y//] d'Y((X.),
where Cyy = T~ ér(%“)[r(g)]f , (%ivi)ey = (¥ — 2xjyicos + )2, 1 < i <k,

1 <k <n,and dy(a Hsm% oy doy ([20,21]).
i=1
The B—convolution operator is defined as:

(fog)(x / FOIT8(x) () dy.

Here, RZ7+ ={xeR": x;>0,...,x > O, 1 <k < n} denotes the part of the Euc-
lidean space R” and Y= (Y1,..-,Y%), Y1 > 0,...,% > 0, |[Y| =v1 + -+ + Y. Denote
x= 2", X = (x1,...,x) € R, and X" = (3¢ q,...,x,) € R,

M 1°° 5 (R") local Morrey -Lorentz spaces have ﬁrst been introduced by Aykol et al.
{E3)) w1th a finite quasi-norm

(o)

_A
L .

These spaces are generalizations of Lorentz spaces and M;"; o(R") =L, ,(R"). The
boundedness of maximal operator in M}f’;x(R”) spaces have been obtained in [4].
Then, in [14], authors have proved that Hardy-Littlewood maximal, Calderén-
Zygmund and maximal Calderén-Zygmund operators are bounded in these spaces.
Also, in [6], Aykol et al. have shown that Hilbert transform is bounded in local and
weak local Morrey-Lorentz spaces. On the other hand, generalized versions of these
operators with the Laplace-Bessel differential operator have been studied in various
function spaces by many mathematicians [2,3,5,11,15-18,20,21,24,25]. The above
results inspire us to investigate the boundedness of B—maximal, B—singular integ-
ral and B—maximal singular integral operator defined on B—local Morrey-Lorentz
spaces. Maximal operators have a crucial role in PDEs, singular integrals and the dif-
ferentiability properties of functions. In the present study, we consider B—maximal
operator defined by (see [13])
Myf () =sup B (.0 [ Al ),
>0 B, (0,r)

where By (x,r) = {y € R} , : |x—y| <r}. For a measurable set B, (0,r) CR} ,, we
have

B0 = [ (@)= ok
B+ (O,r)
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gAY
+1
e 0
=
B—singular integral operator is defined as

T =p [ TR 10y

where ®(n,k,y) = =n+|yl.

. Q(0) :
:hm/ TV F(x0)](Y)dy = lim Ty e f (%), 1.1
e=0./{yeRy ,:lvi>ep [y ANy €0 e/ ) (b
where 6 = y/|y|, and Q(6) belong to some function spaces on the semi-sphere Sy . =
{x € R{, : |x| = 1} and also satisfy the “cancellation” condition with d6(8) is the
area element of the sphere 0| = 1,

Q(0)(8')do(8) = 0.

Sk,+

B—singular integral operator is a convolution type operator, where the kernel of this
Q(6)

/@
of B—singular integral operator K (x) satisfies the followings:

operator is K(y) =

and thus it can be written as Tyf(x) = (K ® f)(x). Kernel

e sup |K(0)| < oo

08y +

3 / |Ke(x)|(x")Ydo < C for all € and x € R}
Sk+

kot where C is a constant inde-

peﬁdent of € and do;
3 / |Ke(x)|(x')Ydx — 0 as € — O for any fixed 8 > 0;
|x|>8

e The kernel of the B—singular integral operator satisfies Hormander’s condi-
tion:

[ KO -TREI) M C v £0,
B, (0.21x)

where C is an absolute constant;
e There exist 8 > 0 and C > O for all distinct x,y € R} with 2|x| < [y| such

that |[K (x)| < C|x|~¢ and
7K (x) = K(y)] < Clx[’ly|27°.

Lemma 1 ([11]). Let sup |Q(0)| =M < +oo. If x| > |y|/2, then

)cG]R;‘_Jr
ITK (x) = K(y)| < CM |y| 2,

where C > 0 is a constant.
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B—maximal singular integral operator Zy is one of the important tools of harmonic
analysis and its applications that is defined by

Q:,f(x) = S‘ilo) ‘Tv,ef(x”,

and behavior of this operator in Lebesgue spaces have been investigated in [11].

The purpose of this study is to obtain that B—maximal My, B—singular integral
Ty and B—maximal singular integral 7, operators are bounded on B—local Morrey-
Lorentz spaces with the use of rearrangement inequalities and Hardy inequality.

The draft of this study is as follows: Section 1 is devoted to introduction. In Sec-
tion 2, we recall some basic notions and some known results which we need through-
out the paper. In Section 3, we have obtained that B—maximal operators in B—local
Morrey-Lorentz spaces are bounded. Section 4 is devoted to the boundedness of
B—singular integral and B—maximal singular integral operators.

Throughout the paper, C denotes a positive constant independent of appropriate
parameters and not necessary the same at each occurrence.

2. PRELIMINARIES

Given any measurable set E with |E|, = / (x')Ydx and a measurable function

f+ Ry . — R, the y—rearrangement of f in decreasing order is defined by
@) =inf{s>0: fiy(s) <1}, Ve (0,00),
where f. y(s) denotes the y—distribution function of f given by
fen(s) ‘{xER \f(x)|>s}‘y.

The average function of f;* is defined as
1 r,
_;/0 fy(s)ds, >0,

(f )y (1) < fy (1) +8,7 (1)

and

is valid [10].
Now, we give some characteristics of y—rearrangement of functions:

e if 0 < p < oo, then

[, rereyac= [ ar:
Rk,+

e for any r > 0,

sup [ 1)) = / £i(s) @.1)

|Ely=t/E
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gy
A

e it is well known that

(f+8)y(0) < fy (1/2) + gy (t/2) 2.2)

el < [ g0

n
k,+

holds [8, 10,28].

Definition 1 ([22]). L, (R} +) Lorentz space is the set of all measurable func-
tions f € Ry | such that

1]z, gpre ) =

1 1
zraf*(r)H < oo,
y Lq((),w)

If0 < p <oo,g=oco, then Lyy(Ry ) =WL, (R} ), where WL, y(R} , ) is weak
Lebesgue space of all measurable functions f such that

1w,y ) = fggtl/pf;(f) <oo, 1< p<oo,

If p=g=-coorl<gq< p, then functional || f]|, 4y is a norm [8, 15,28]. However if
p=gq =00, then Leocoy(RY | ) = Looy(RY ).
In case 0 < p,q < oo, the functional || - Hzp.w is given by

1_1
1A, = 110y = 175 55Oy 0000

which is anormon L, 44(R} ) for 1 < p <o, 1 <g<eoor p=g=-co.
Ifl<p<oo, 1< g< oo, then

p
£ gy < N0y < EHJCHP%Y’

thatis, || ||y and || f]|}, ;. are equivalent.

Definition 2 ([12]). Let 1 < p <o, and 0 <A < Q. LP,M(RZ.H B—Morrey space
is the set of all measurable functions with f € L}f@(RZ ) such that

_2
[T e T 1Nl 4B, () < o
ko
IfA =0, then L, 0y(RY ;) = L,y(R} | ); if A <0 or A> Q, then L, y(R} ,) = O,
where © is the set of all functions equivalent to 0 on Ry . Also, the weak B—Morrey

space WL, (R} . ) is the set of all functions f € WL}?&(]RZ .) with the following
norm

A
If HWL,,A;L.V(RZ&) = S;;?DOF o\ f ||WL,,$Y(B+(x,r)) < ee.
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Definition 3 ([9]). Let 0 < p <o and 0 <A < 1. LM, = LM, ;(0,) local
Morrey space is the set of all functions f & L};’C(O, o) such that

L
1|y, 5. (0.00) = sUPT™ [ fll L, (0.r) < oo
r>0

Moreover, WLM, , = WLM,, , (0, ) denotes the weak local Morrey space of all func-
tions f € WL},;’C(O,oo) such that

_A
HfHWLMp‘K(O"OO) - Sugr ! HfHWLp(OJ) < .
r>

Definition 4. Let 0 < p,g <ccand 0 <A < 1. Mloq M(RZ’ ) B—local Morrey-
Lorentz space is the set of all measurable functions with quasi-norm

A 11
1 g,y L) = supr llera fy (), 0, < oo
r>

If A <OorA> 1, then M}f; . Y(RZ’ ) = ©, where O is the set of all functions equi-

valent to 0 on ]RZ 4 Also,

LO(q: 0yRi 1) =Lpgy(Rg ) and MLO; A y(Rk )= 11008 7(RE 1)

WM?‘;M(R;; ) weak B—local Morrey-Lorentz space is the set of all measurable

functions with the quasinorm
A
|!fHWM}g;M(R;+) = iggr alltr—a 5 (O llwe, 0. < oo

Definition 5 ([27]). Let B € R and ¢ be a measurable function on (0,c). The
weighted Hardy operators H? and #®, on which the power weights acts, are defined

as
Bo(r) — -1 [M P04 8 B /
HP(t) =t v dy, HPo(r) =t B+1

For the proof of our main theorems, we need the following Hardy inequalities:

Theorem 1 ([6,27]). LetfeR, 0 <A< 1.

1 A
i If1<g<eandP < — +—, then
9 4q

p
7201, 0y = €19t 0

L(Ovoo)

1 A
ii. If1<g<ocoandP=— +—, then
q9 4

HP H <c .
[0l 11, 0y = €19t 00
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A—1
iii. If1 <g<ooandP > ——, then
q
B
H}[ (pHLMq_x(o,oo) = C”(pHLMq,x(O»“)'
. A—1
iv. If1 <g<eoand=——, then
q

p
[0, 111 0y = €19t 00

3. B—MAXIMAL OPERATORS IN B—LOCAL MORREY-LORENTZ SPACES

We first give sharp rearrangement inequality for B—maximal operator. By using
this inequality, we get B—maximal operator is bounded in M), ;3 y(R} . ).

Lemma 2 ([3]). Sharp rearrangement inequality for B—maximal operator is given
by
(Myf)y(t) SCf,7(1), t>0, 3.1
where C = C(n,7y) > 0 is a constant.

Theorem 2. Letl<q<w0<l<1and 7 <p<ee.

() If -L- < p < oo, then B—maximal operatorM is bounded in B—Ilocal Morrey-
g+h Y

Lorentz space Mlp(fz.l,v(sz L)

(i) If p = =L, then B—maximal operator M- is bounded from B—local Morrey-
q+A Y
Lorentz space M;’; . Y(sz .) to weak B—local Morrey-Lorentz space
1

WM 03 2 Y(]RZHF).
(iii) If p = g = oo, then B—maximal operator My is bounded in Lo y(R} ).
Proof: (i) Let ;43 < p<ecoand f € Mloc

ot AY(RZ, +)- By Definition 4 and the in-
equality (3.1), we obtaln

A1t
I s, = supr ™ s )50

A 1 1
< Csupr 4 ||[tr £t
- r>g fY ( ) q(0,r)
_A 1 !
=Csupr ¢ ||tr 4 fy (s)ds
r>0 L,(0,r)
Let B = % é and ¢ = tP f1f*( ). Then from Theorem 1, we get
A
|Myfllppoe. < Csupr ¢ 8 ol )
ekt T s 0 s L,(0.9)
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=]t
? LM, (0,00)

<C H(PHLM,M(W)

1
_ Csupr o, 0,

—Csupré t qu()H

r>0

= HfHM‘p‘f;M'

Hence, the desired result is obtained.

(ii) Let p = q% and f € ML"; M(RZ, ). From Definition 4 and inequality (3.1),

Al t
R /Of;(s)ds

e
where =1+ ﬂ and ¢ = T 7 (t). Therefore, we obtain by Theorem 1

Ly(0,r)

we have

2
[Myfllwapos = Csupr s
drarr >0

L s
¢ WLM,5(0,%)

HH%H < Cl0lzatyy 0 = CILF g

WLM,5(0,0) 2L

Then we get the operator My is bounded from B—local Morrey-Lorentz space

M 5. 0 weak B—local Morrey-Lorentz space WM oy
Ew R ) pEwRlE Y

(iii) Let p=o0 and f € M};’Cq M(RZ,Jr)' From [14, Remark 2.1], it is well known

that Mlocq Ay = = O for any 0 < g < . Hence, we now consider the case of g = co.
Since M};’Cq ay = WLpy for g = oo and My is bounded in L.y, we obtain the desired

EE RlAd)

result. U
Corollary 1. () If 1 < p < oo, 0 <A <1, then B—maximal operator My is
bounded in M})‘)i.Y(RZ’ L)

(i) If 1 < p < oo 1< g < oo then B—maximal operator My is bounded in

Lqu~Y(Rz,+)'
(iii) If 1 < g < oo, then B—maximal operator My is bounded in WL, y(R}, ).

4. B—SINGULAR INTEGRAL OPERATORS IN B—LOCAL MORREY-LORENTZ
SPACES

We first give sharp rearrangement inequality for B—singular integral operator. By

using this inequality, we obtain that B—singular integral is bounded in M l°q 2 Y(RZ’ L)

Theorem 3 ([18]). Let f,g € ]RZHH Then

roey <G (50 [ & [ fwewar). o
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Theorem 4 ([18]). If Ky € WLQ/(Q_OC)VY(RZ&), 0<a<Q, then
t oo
Kum ) < Kum o)y (0 <€ (1907 [ fass [0 o).
t

where C = C’Y,k(Q/a)z||KOL||WLQ/(Q,Q),Y(RZ‘+)'

Since 7y f is convolution type operator and from the above theorem, we can write

(Tyf)35(0) < (T f)5 (1) gc(:l /0 Fr(s)ds + /t Ty f;(s>ds). @1

q q
Theorem 5. Suppose that f € M}f; M(RZ,+)’ 1<g<oo,0<A<], Y <p< %

and B—singular integral operator Tyf exists a.e. x € Ry . Moreover,

G) If1 <g<oo, % <p< %, then B—singular integral operator is bounded
q

in B—local Morrey-Lorentz space M})"; A Y(RZ’ L)

(i) If1<g<oo, p= %, then B—singular integral operator is bounded from
q
ML"; 2 Y(RZ ) to weak B—local Morrey-Lorentz space WM;’; 2 Y(RZ L)

Proof Let 1 <g< o, 0 <A<, andﬁ<p§

B—singular integral operator 7y f exists a.e. x € Ry ..

()Let1<g<oo,0<A<1,and —2

% Since f satisfies (4.1),

Q loc s
Y <p< 2 and f € Mp Ay From Definition

q
4 and by using inequality (4.1) and Minkowski’s inequality, we have

11
ITefllpgie ey ) = = Csupr 4 || "(va)i(f)

r>0

< Csupr—™4||s (Tyf )y ( H

r>0

4(0,7)
Mg fy
< Csupr 7 /fv +/
r>0

< Csupr 4 t%ﬁ*l/of;‘(s)ds

Ly(0,r)

Ly(0,r)

r>0 (OJ‘)
+supr M4 t%ﬁ/ Sl )ds
>0 t s L,(0,r)

=L +D5.
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I can be estimated using the same method as in the proof of Theorem 2. Let us
estimate /,:

L =supr 4 tF"/ fy

— —Mq ||/B
=supr t/ SBH

L,(0,r)

(0,r)

0.r)

LMq.}u(Ovoo)
= H(PHLM

= Csupr /q ”(pHLMq (0.r)
>0

— Csupr M4 tﬂ 2
r>g f ( ) L,,(O,r)

= [| £l pg10c (4.2)

pary’

where @(t) = t%_%fq}‘(t). Since 1 il > 0, the inequality [3 > 2 5 is valid for

B= % - %. Therefore, we obtain I, g C|lfll Mo - As a consequence, we get the
PahY

desired result.
(i) Let p= —1— 1 < g<eoand f € M, (R ). From Definition 4 and with
. ,

A P:a:hY
the use of inequality (4.1) and Minkowski’s inequality, we have
A—1
T, = Csupr ™|l 5 ()30 |
| Yf”WM}Z/M)qM(R )= Csupr ¢ (Tyf)y(2) WL (00)
< Csupr M|z (Tyf )y ( H
r>0 WL, (0,%0)
Ao t
< Csupr M4 (e fy (s)ds
>0 0 WL, (0,00)

1+% /Wf;(s)d
t S

J1 can be estimated using the same method as in the proof of Theorem 2. Let us
estimate J>. By Theorem 1, we have
A / fv ‘

+Csupr M4 |r
r>0

=J1+ /.

WLy(0,0)

= Csup rMa
r>0

Ly(0,0)
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= Csupr M4||/® ; (p(s)ds‘
r>0 t SB_*'1 WL,(0,00)
— supr—Ma H 7B H
=supr
r>](;)) i WL,(0,%0)
=C ||zt
WLMq.?»(Ovoo)
= ||(PHLM,]VK(0,DO)
= CE‘;I; r M ||(P||L,,(0,oo)
A—1
— Csupr M4 HtHT (¢ ’
r>g fY( ) Lq(0:°°)
=7l
A
where B =1+ @ and ¢(1) = £ fy(t). Therefore, we obtain that 7y is bounded
from M to WM'C Thus, the proof is completed. O

q/(g+A),q. 1y q/(g+A),q. Ay
q
Theorem 6. Suppose that f € M})‘jz’k’y(szJr), 1<g<o,0<A<], Y <p<

a and (4.1) is valid, then B—maximal singular integral operator ‘Iyf is finite a.e.

xeRY I Furthermore,

Q) If1<g<os, CI‘F% <p< % then Iy is bounded on B—local Morrey-Lorentz
space M;?‘;M( )
() If l <g<eoo p= CI-FLN then Iy is bounded from ML?;A,Y( Zﬂr) to weak
B—local Morrey-Lorentz space WM ;J?;,M(( i)
Proof. Let 1 < g <o, 0 <A< 1, and % <p< % Since f satisfies (4.1),

the B—maximal singular integral operator Zyf(x) is finite almost everywhere for
x € R}, . By using inequality (4.1), the proof of theorem can be easily obtained
in a similar manner of method of Theorem 5. O
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