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Abstract. In this paper, we study the global behavior of positive solutions of the following system
of difference equations

xn+1 = A+
yn

yn−k
, yn+1 = A+

zn

zn−k
, zn+1 = A+

xn

xn−k
, n ∈ N0,

where the parameter A> 0, the initial values x−i,y−i,z−i, i∈{0,1,2, . . . ,k}, are arbitrary positive
real number and k ∈ N. Moreover, we provide semi-cycle analysis of positive solutions to the
above system of difference equations. Finally, we also give some numerical examples which
support our analytical results.
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1. INTRODUCTION AND PRELIMINARIES

Let N be set of all natural numbers, N0 be set of non-negative integers, Z be set of
all integers, R be set of all real numbers and for k ∈ Z the notation Nk represents the
set of {n ∈ Z : n ≥ k}.

Discrete dynamical systems and difference equations have attracted attention of
researchers in the last years, particularly these equations and systems, which arise in
mathematical models describing the real world phenomenon, are used in natural sci-
ences, engineering, operations research, social sciences and linguistics, etc. Recently,
there has been a lot of study concerning the qualitative behaviour of nonlinear dif-
ference equation and system of difference equations [1–24]. Even though difference
equations with higher-order and their systems have sometimes very simple in their
form, they are actually difficult to understand exact the behaviour of their solutions.
Hence, studying the qualitative behaviour of such difference equations and system
of difference equations is worth further consideration. Later on, making a historical
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flash back for the system of difference equation we consider in this paper, we should
mention that in paper [1], Abu-Saris and Devault investigated the global asymptotic
stability results for the equation

yn+1 = A+
yn

yn−k
, n ∈ N0, (1.1)

where A ∈ (0,∞) , k ∈ N2 and x−i, for i ∈ {0,1, . . . ,k}, are positive real numbers,
while the next difference equation

yn+1 = α+
yn−k

yn
, n ∈ N0, (1.2)

where α ∈ (1,∞) , k ∈N1 and x−i, for i ∈ {0,1, . . . ,k}, are positive real numbers, was
studied in [8]. Eqs. (1.1) and (1.2) were good prototypes for inspiring the investig-
ation of their several extensions. A natural extension of (1.2) is the next system of
difference equations

xn+1 = A+
yn−k

yn
, yn+1 = A+

xn−k

xn
, n ∈ N0, (1.3)

with A > 0, and the initial conditions x−i, y−i, for i ∈ {0,1, . . . ,k}, are arbitrary pos-
itive real numbers. Zhang et al. [21] overcomed the asymptotic behavior of positive
solutions to the system (1.3) in the cases 0 < A < 1, A = 1 and A > 1. Addition-
ally, in [9], Gümüş dealt with the global asymptotic stability of positive equilibrium,
the rate of convergence of positive solutions and semi-cycle analysis of system (1.3).
The other extensions of Eq. (1.2) can be found in references [2, 13, 15, 20, 22, 24].
Similarly, a natural extension of (1.1) is the following two-dimensional system of
difference equation

xn+1 = A+
yn

yn−k
, yn+1 = A+

xn

xn−k
, n ∈ N0, (1.4)

with A > 0, and the initial conditions x−i, y−i, for i ∈ {0,1, . . . ,k}, are arbitrary pos-
itive real numbers. Abualrub and Aloqeili performed semi-cycle analysis of positive
solutions of system (1.3) and also studied the dynamical behavior of the solutions of
system (1.3) in the cases 0 < A < 1, A = 1 and A > 1. Some related to extensions
of Eq. (1.1) have extensively studied. For more details see [4, 16, 20, 23] and the
reference therein

Inspired with the previous valuable theoretical results, we consider the following
three-dimensional symmetrical system of difference equation with high order

xn+1 = A+
yn

yn−k
, yn+1 = A+

zn

zn−k
, zn+1 = A+

xn

xn−k
, n ∈ N0, (1.5)

where the parameter A > 0, the initial conditions x−i,y−i,z−i, i ∈ {0,1,2, . . . ,k},
are arbitrary positive number and k ∈ N, which is natural extensions of Eq. (1.1)
and system (1.4). The main purpose of this paper is to study global asymptotic
stability of positive equilibrium, boundedness character of positive solutions, the
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rate of convergence of positive solutions and semi-cycle analysis of positive solu-
tions to system (1.5). In addition, the theoretical results are verified by numerical
examples. It is clearly seen that system (1.5) has a unique positive equilibrium
(x̄, ȳ, z̄) = (A+1,A+1,A+1).

2. SEMI-CYCLE ANALYSIS OF SYSTEM (1.5)

In this section we investigate the behavior of positive solution to system (1.5) by
means of semi-cycle analysis method. It is easy to see that system (1.5) has a unique
positive equilibrium point (x̄, ȳ, z̄) = (A+1,A+1,A+1).

Theorem 1. Assume that {(xn,yn,zn)}∞
n=−k is a solution to system (1.5). Then

either this solution is non-oscillatory solution or it oscillates about the equilibrium
(x̄, ȳ, z̄) = (A+1,A+1,A+1) , with semi-cycles having k+1 terms.

Proof. Let {(xn,yn,zn)}∞
n=−k be a solution to system (1.5) and for any integer n0 ∈

N0, (xn0 ,yn0 ,zn0) be the last term of a semi-cycle which has at least k terms. Then,
from this assumption, we can write either

. . . ,xn0−k+1, . . . ,xn0−1,xn0 < 1+A ≤ xn0+1,

. . . ,yn0−k+1, . . . ,yn0−1,yn0 < 1+A ≤ yn0+1,

. . . ,zn0−k+1, . . . ,zn0−1,zn0 < 1+A ≤ zn0+1,

(2.1)

or 
. . . ,xn0−k+1, . . . ,xn0−1,xn0 ≥ 1+A > xn0+1,

. . . ,yn0−k+1, . . . ,yn0−1,yn0 ≥ 1+A > yn0+1,

. . . ,zn0−k+1, . . . ,zn0−1,zn0 ≥ 1+A > zn0+1.

(2.2)

Now, in here we will only present the first case since the other case can be done in a
similar way. From (2.1) and (1.5), we have

xn0+2,xn0+3, . . . ,xn0+k+1 > A+1,
yn0+2,yn0+3, . . . ,yn0+k+1 > A+1,
zn0+2,zn0+3, . . . ,zn0+k+1 > A+1,

(2.3)

from which it implies that the semi-cycle beginning with (xn0+1,yn0+1,zn0+1) has at
least k+ 1 terms. Now, we may assume that the semi-cycle beginning with (xn0+1,
yn0+1,zn0+1) include exactly k+ 1 terms. Then, the next semi-cycle will start with
(xn0+k+2,yn0+k+2,zn0+k+2) such that

xn0+1,xn0+2, . . . ,xn0+k+1 ≥ 1+A > xn0+k+2,

yn0+1,yn0+2, . . . ,yn0+k+1 ≥ 1+A > yn0+k+2,

zn0+1,zn0+2, . . . ,zn0+k+1 ≥ 1+A > zn0+k+2,

(2.4)
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from which along with (1.5), for i = 1,2, . . . ,k, it follows that
xn0+k+2+i = A+

yn0+k+1+i

yn0+1+i
< A+1,

yn0+k+2+i = A+
zn0+k+1+i

zn0+1+i
< A+1,

zn0+k+2+i = A+
xn0+k+1+i

xn0+1+i
< A+1,

(2.5)

which is desired. □

Theorem 2. System (1.5) has no nontrivial periodic solutions of period k (not
necessarily prime period k).

Proof. Assume that system (1.5) has k-periodic solutions in the following form

. . . ,(α1,β1,γ1) ,(α2,β2,γ2) , . . . ,(αk,βk,γk) , . . . . (2.6)

Then, from (1.5), it is not hard to see that for all n≥ 0, (xn−k,yn−k,zn−k)= (xn,yn,zn) ,
and so

xn+1 = A+
yn

yn−k
= A+1, yn+1 = A+

zn

zn−k
= A+1, zn+1 = A+

xn

xn−k
= A+1, (2.7)

for all n ≥ 0, which means that the solution to system (1.5) is the equilibrium solution
(x̄, ȳ, z̄) = (A+1,A+1,A+1), which is desired. □

Theorem 3. Any increasing solution to system (1.5) is non-oscillatory positive.

Proof. Assume that {(xn,yn,zn)}∞
n=−kis an increasing non-oscillatory solution to

system (1.5). Then, from (1.5), we can write either
A+1 ≤ x1,

A+1 ≤ y1,

A+1 ≤ z1,

(2.8)

or 
x1 < A+1,
y1 < A+1,
z1 < A+1.

(2.9)

From (1.5), it is easy to see that the inequalities in (2.8) hold. On the other hand, if the
inequalities in (2.9) are satisfied, then we may assume that the semi-cycle involving
(x1,y1,z1) ends with (xi,yi,zi) such that i ∈ {1,2, . . . ,k+1}. If i = k+2, then

xk+2 = A+ yk+1
y1

< A+1,
yk+2 = A+ zk+1

z1
< A+1,

zk+2 = A+ xk+1
x1

< A+1,
(2.10)

which means that yk+1 < y1, zk+1 < z1 and xk+1 < x1, where k+ 1 > 1, which con-
tradicts that the solution to system (1.5) is increasing. Hence, the proof is com-
pleted. □
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Theorem 4. System (1.5) has no non-oscillatory negative solutions ( has no infin-
ite negative semi-cycle)

Proof. Let {(xn,yn,zn)}∞
n=−k be a solution to system (1.5). We may suppose that

system (1.5) has an infinite negative semi-cycle beginning with (xN ,yN ,zN) for N ≥
−k. Then, it is clearly to see that xn < A+ 1, yn < A+ 1 and zn < A+ 1, for every
n ≥ N. From this and system (1.5), we get yn < yn−k, zn < zn−k and xn < xn−k, for
n ≥ max{1,N − 1}, from which along with system (1.5) it follows that for every
n ≥ max{1,N} 

A < · · ·< xn+k < xn < xn−k < A+1,
A < · · ·< yn+k < yn < yn−k < A+1,
A < · · ·< zn+k < zn < zn−k < A+1.

(2.11)

From the inequalities in (2.11), we get that there exists αi, βi and γi for all i ∈
{0,1, . . . ,k−1} such that

lim
n→∞

xnk+i = αi, lim
n→∞

ynk+i = βi, lim
n→∞

znk+i = γi. (2.12)

Therefore,
(α0,β0,γ0) ,(α1,β1,γ1) , . . . ,(αk−1,βk−1,γk−1) (2.13)

is a periodic solution (not necessarily prime period) of system (1.5) with period k,
which contradicts with Theorem 2 in the case when the solution is not trivial solution.
So, the solution to system (1.5) converge to the equilibrium, which contradicts that
the solution to system (1.5) is diverging from the equilibrium. Thus, the proof is
completed. □

Theorem 5. System (1.5) has no decreasing non-oscillatory solutions.

Proof. Let {(xn,yn,zn)}∞
n=−k be a solution to system (1.5) which is a decreasing

non-oscillatory solutions. Then, the solution to system (1.5) is either of the form
· · · ≤ x3 ≤ x2 ≤ x1 ≤ A+1,
· · · ≤ y3 ≤ y2 ≤ y1 ≤ A+1,
· · · ≤ z3 ≤ z2 ≤ z1 ≤ A+1,

(2.14)

or there exists a positive integer n0 ≥ k+1 such that
· · · ≤ xn0+2 ≤ xn0+1 ≤ A+1 ≤ xn0 ≤ xn0−1,

· · · ≤ yn0+2 ≤ yn0+1 ≤ A+1 ≤ yn0 ≤ yn0−1,

· · · ≤ zn0+2 ≤ zn0+1 ≤ A+1 ≤ zn0 ≤ zn0−1.

(2.15)

In the second case, it is clearly seen that the positive semi-cycle ends with (xn0 ,yn0 ,zn0)
and furthermore it contains at most 2k+2 terms. From (2.14) and (2.15), the solution
to system (1.5) has an infinite negative semi-cycle, which contradicts with Theorem
4. Thus, the proof is completed. □
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Theorem 6. Let k be even and {(xn,yn,zn)}∞
n=−k be a solution to system (1.5).

Then the following statements hold.

(a) Every semi-cycle has length at most 3k+1.
(b) The extreme term in a semi-cycle occurs in the first k+ 3 term of the semi-

cycle.
(c) Every solution oscillates about (x̄, ȳ, z̄) = (A+1,A+1,A+1) .

Proof. Let {(xn,yn,zn)}∞
n=−k be a solution to system (1.5). In here we will just

prove the case of a negative semi-cycle since the proof the other case can be done in
a similar way. We may assume that system (1.5) has a negative semi-cycle beginning
with (xµ,yµ,zµ), for µ ≥ −k, and furthermore it involves 2k+ 1 terms. Then, from
definition of negative semi-cycle we can write the following inequalities

xµ,xµ+1, . . . ,xµ+2k < A+1,
yµ,yµ+1, . . . ,yµ+2k < A+1,
zµ,zµ+1, . . . ,zµ+2k < A+1.

(2.16)

By considering system (1.5) and the inequalities in (2.16), we have
xµ+k+1+i = A+

yµ+k+i
yµ+i

> A+
yµ+k+i
A+1 > yµ+k+i,

yµ+k+i = A+
zµ+k+i−1
zµ+i−1

> A+
zµ+k+i−1

A+1 > zµ+k+i−1,

zµ+k+i−1 = A+
xµ+k+i−2
xµ+i−2

> A+
xµ+k+i−2

A+1 > xµ+k+i−2,

(2.17)

for i ∈ {2,3, . . . ,2k−1}, which means that
xµ+k < zµ+k+1 < yµ+k+2 < xµ+k+3 < zµ+k+4 < yµ+k+5 < xµ+k+6 < · · ·< xµ+3k,

yµ+k < xµ+k+1 < zµ+k+2 < yµ+k+3 < xµ+k+4 < zµ+k+5 < yµ+k+6 < · · ·< yµ+3k,

zµ+k < yµ+k+1 < xµ+k+2 < zµ+k+3 < yµ+k+4 < xµ+k+5 < zµ+k+6 < · · ·< zµ+3k.

(2.18)

From (2.18), we have

xµ+k < xµ+3k, yµ+k < yµ+3k, zµ+k < zµ+3k, (2.19)

from which along with system (1.5), it follows that
xµ+3k+1 = A+

yµ+3k
yµ+2k

> A+1,

yµ+3k+1 = A+
zµ+3k
zµ+2k

> A+1,

zµ+3k+1 = A+
xµ+3k
xµ+2k

> A+1.

(2.20)

Thus, from (2.20), we conclude that a negative semi-cycle has at most 3k+1 terms.
Furthermore, the first k+3 terms of a semi-cycle are formed as the extreme term in
this semi-cycle. Finally, every solution to system (1.5) oscillates about the equilib-
rium (x̄, ȳ, z̄) = (A+1,A+1,A+1). Therefore the proof is completed. □
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3. THE ASYMPTOTIC BEHAVIOR OF SYSTEM (1.5)

In this section, we study the asymptotic behavior of system (1.5) according to
values of A.

Theorem 7. Assume that A = 1. Then every positive solutions of system (1.5) is
bounded and persists.

Proof. Assume that A = 1 and {(xn,yn,zn)}∞
n=−k is a positive solutions of system

(1.5). It is easily seen that for every n ∈ N0, xn,yn,zn > A = 1. Thus, we can write

xi,yi,zi ∈
[

K,
K

K −1

]
, i = 1,2, . . . ,k+1, (3.1)

where K = min{α, β

β−1}> 1, α = min
1≤i≤k+1

{xi,yi,zi}, β = max
1≤i≤k+1

{xi,yi,zi}. From sys-

tem (1.5), we have

K = 1+
K
K

K−1

≤ xk+2 = 1+
yk+1

y1
≤ 1+

K
K−1

K
=

K
K −1

, (3.2)

K = 1+
K
K

K−1

≤ yk+2 = 1+
zk+1

z1
≤ 1+

K
K−1

K
=

K
K −1

, (3.3)

K = 1+
K
K

K−1

≤ zk+2 = 1+
xk+1

x1
≤ 1+

K
K−1

K
=

K
K −1

. (3.4)

By using the method of induction, it follows that

xi,yi,zi ∈
[

K,
K

K −1

]
, for all i = 1,2, . . . , (3.5)

which is desired. □

Theorem 8. Assume that A = 1 and {(xn,yn,zn)}∞
n=−k is a positive solutions of

system (1.5). Then the following result holds true.

lim
n→∞

infxn = lim
n→∞

infyn = lim
n→∞

infzn

lim
n→∞

supxn = lim
n→∞

supyn = lim
n→∞

supzn

Proof. Assume that
l1 = limn→∞ infxn, u1 = limn→∞ supxn,

l2 = limn→∞ infyn, u2 = limn→∞ supyn,

l3 = limn→∞ infzn, u3 = limn→∞ supzn.

(3.6)

From (3.6) and system (1.5), we get the following inequalities

1 < l1 ≤ u1, 1 < l2 ≤ u2, 1 < l3 ≤ u3 (3.7)
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and 
1+ l2

u2
≤ l1, u1 ≤ 1+ u2

l2
,

1+ l3
u3

≤ l2, u2 ≤ 1+ u3
l3
,

1+ l1
u1

≤ l3, u3 ≤ 1+ u1
l1
,

(3.8)

from which it follows that 
u1l2 ≤ l2 +u2 ≤ l1u2,

u2l3 ≤ l3 +u3 ≤ l2u3,

u3l1 ≤ u1 + l1 ≤ u1l3.
(3.9)

Also, from the inequalities in (3.9), without loss of generality assume that we con-
tinue only with the following equality cases

l2u1 = l1u2, (3.10)
l2u1 = l2 +u2, (3.11)
l3u2 = l2u3, (3.12)
l2u3 = l3 +u3, (3.13)
l1u3 = u1l3, (3.14)
l3u1 = l1 +u1. (3.15)

From (3.10), (3.12) and (3.14), it follows that
l1
l2

=
u1

u2
, (3.16)

l2
l3

=
u2

u3
, (3.17)

l1
l3

=
u1

u3
. (3.18)

Now, upon dividing both side of (3.13) by l2 and both side of (3.15) by l3, we obtain

u3 =
l3
l2
+

u3

l2
, (3.19)

u1 =
l1
l3
+

u1

l3
, (3.20)

from which along with (3.17), (3.12) and after some basic calculations, it follows that

l2 =
u2

u2 −1
, (3.21)

l3 =
u3

u1 −1
. (3.22)

Replacing l2 by u2
u2−1 in (3.11) and l3 by u3

u1−1 in (3.13), we get

u1
u2

u2 −1
=

u2

u2 −1
+u2, (3.23)
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u2
u3

u3 −1
=

u3

u3 −1
+u3, (3.24)

which can be written as follows
u2

u2 −1
=

u1

u2 −1
, (3.25)

u3

u3 −1
=

u2

u3 −1
. (3.26)

From this and the equalities (3.16) and (3.17), consequently

u2 = u1 = u3, (3.27)
l2 = l1 = l3 (3.28)

and this complete the proof. □

Theorem 9. Assume that A = 1. Then, system (1.5) has no positive nontrivial
solution prime period-two.

Proof. Let {(xn,yn,zn)}∞
n=−k be a positive solution of system (1.5). Assume that

a,b,c,d,e, f > 1 and for all n ∈ N0, x2n−k = a, y2n−k = b, z2n−k = c, x2n+1−k = d,
y2n+1−k = e and z2n+1−k = f . Then, it is clearly seen that the positive solutions of
system (1.5) has the following form

. . . ,(a,b,c),(d,e, f ),(a,b,c),(d,e, f ), . . . . (3.29)

If it was a = d, b = e and c = f , then we would have that the solution to system (1.5)
is not two-periodic. So, it must be a ̸= d, b ̸= e and c ̸= f . By considering Theorem
(8), we can write the following equalities

min{a,d}= lim
n→∞

infxn = lim
n→∞

infyn = min{b,e}= lim
n→∞

infzn = min{c, f} (3.30)

and

max{a,d}= lim
n→∞

supxn = lim
n→∞

supyn = max{b,e}= lim
n→∞

supzn = max{c, f}.
(3.31)

There are eight cases to be considered.
a) If a < d, b < e and c < f , then a = b = c and d = e = f and the solution to

system (1.5) can be written in the following form

. . . ,(a,a,a),(d,d,d),(a,a,a),(d,d,d), . . . . (3.32)

b) If a < d, b < e and c > f , then a = b = f and d = c = e and the solution to
system (1.5) is expressed in the following form

. . . ,(a,a,d),(d,d,a),(a,a,d),(d,d,a), . . . . (3.33)

c) If a < d, b > e and c > f then a = e = f and d = b = c and the solution to
system (1.5) is written as in the form

. . . ,(a,d,d),(d,a,a),(a,d,d),(d,a,a), . . . . (3.34)
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d) If d > a, b > e, f > c then a = e = c and d = b = f and the solution to system
(1.5) can be written in the following form

. . . ,(a,d,a),(d,a,d),(a,d,a),(d,a,d), . . . . (3.35)

e) If a > d, e > b, f > c then d = b = c and a = e = f and we obtain the case
(c).

f) If a > d, e > b, c > f then d = b = f and a = e = c and we get the case (d).
g) If a > d, b > e, f > c then d = e = c and a = b = f and we have the case (b).
h) If a > d, b > e, c > f then d = e = f and a = b = c and we reach the case

(a).

In here, we will only prove in the case when k is odd, since the proof of other case can
be done in a similar way. Then, from our above assumptions and (3.32), we can write
x2n−k = a, y2n−k = a, z2n−k = a, x2n+1−k = d y2n+1−k = d, z2n+1−k = d for the case
(a), from which it follows that x1 = 1+ y0

y−k
, so a = 1+ d

a that also means a2 = a+d.
Further, x2 = 1+ y1

y−k+1
, so d = 1+ a

d which implies that d2 = a+ d. Then d2 = a2,
but d ̸= a, so d = −a. Therefore, we conclude that in this case system (1.5) has no
positive prime period-two solutions. The other cases can be obtained similar to the
case (a). So we will omit proofs of other cases.

□

Theorem 10. Assume that A > 1. Then every positive solutions of system (1.5) is
bounded and persists.

Proof. Let {(xn,yn,zn)}∞
n=−k be a positive solutions of system (1.5). Since A > 1

and the initial conditions x−i,y−i,z−i, for all i ∈ {0,1,2, . . . ,k}, are arbitrary positive
numbers, then we can write the following inequalities

xn > A, yn > A, zn > A, for all n ≥ 1. (3.36)

By considering system (1.5) and (3.36), we get for all n ≥ k+2

xn = A+
yn−1

yn−k−1
< A+

1
A

yn−1, (3.37)

yn = A+
zn−1

zn−k−1
< A+

1
A

zn−1, (3.38)

zn = A+
xn−1

xn−k−1
< A+

1
A

xn−1. (3.39)

Now assume that {(un,vn,wn)} is solutions of the following difference equations
systems

un = A+
1
A

vn−1, vn = A+
1
A

wn−1, wn = A+
1
A

un−1, n ≥ k+2, (3.40)
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such that ui = xi, vi = yi, wi = zi, where i ∈ {1,2, . . . ,k+1}. Now we will prove the
following inequalities using the induction method for n ≥ k+2

xn < un, yn < vn, zn < wn. (3.41)

It is easy to see that, for n = k+2, from system (1.5) and (3.41), we have

xk+2 = A+
yk+1

y1
< A+

yk+1

A
= A+

1
A

vk+1 = uk+2. (3.42)

Assume that the inequalities in (3.41) hold for m> k+2. Then, from this assumption,
system (1.5) and (3.40), we obtain

xm+1 < A+ 1
A ym < A+ 1

A vm = um+1,

ym+1 < A+ 1
A zm < A+ 1

A wm = vm+1,

zm+1 < A+ 1
A xm < A+ 1

A um = wm+1,

(3.43)

which ends up the induction. Hence, considering (3.40), the following equations are
obtained for m ≥ k


um+3 = 1

A3 um + 1
A +A+1,

vm+3 = 1
A3 wm + 1

A +A+1,
wm+3 = 1

A3 vm + 1
A +A+1.

(3.44)

From (3.44), we have that the sequences (uk+3l+i)l≥0, (vk+3l+i)l≥0 and (wk+3l+i)l≥0,
for i ∈ {0,1,2}, provide the following recurrence relation

rn+1 =
1

A3 rn +
1
A
+A+1, n ≥ k, (3.45)

from which it follows that for all l ≥ 0,
uk+3l+i =

(
xk+i +

A2

1−A

)( 1
A

)3l
+ A2

A−1 ,

vk+3l+i =
(

yk+i +
A2

1−A

)( 1
A

)3l
+ A2

A−1 ,

wk+3l+i =
(

zk+i +
A2

1−A

)( 1
A

)3l
+ A2

A−1 .

(3.46)

By considering (3.36), (3.41) and (3.46), we can write the boundaries of the solutions
to system (1.5) for all l ≥ 0 and i ∈ {0,1,2} as follows

A < xk+3l+i ≤
(

xk+i +
A2

1−A

)( 1
A

)3l
+ A2

A−1 ,

A < yk+3l+i ≤
(

yk+i +
A2

1−A

)( 1
A

)3l
+ A2

A−1 ,

A < zk+3l+i ≤
(

zk+i +
A2

1−A

)( 1
A

)3l
+ A2

A−1 ,

(3.47)

which is desired.
□
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Theorem 11. Assume that A ≥ 1 and {(xn,yn,zn)}∞
n=−k is a solution to system

(1.5). Then, system (1.5) has no non-oscillatory positive solutions (has no infinite
positive semi-cycle).

Proof. Let {(xn,yn,zn)}∞
n=−k be a solution to system (1.5). Conversely, we suppose

that system (1.5) has a non-oscillatory positive solutions and also this solution has an
infinite positive semi-cycle beginning with (xµ,yµ,zµ) for µ ≥ −k. By considering
definition of positive semi-cycle and system (1.5), we have

xn+1 = A+ yn
yn−k

≥ A+1,

yn+1 = A+ zn
zn−k

≥ A+1,

zn+1 = A+ xn
xn−k

≥ A+1,
(3.48)

for n ≥ µ− 1. From Theorem (10), there exist three real numbers K,L and M such
that for every n ≥ k+2, xn ≤ K, yn ≤ L and zn ≤ M. From this and (3.48), we can
write 

A+1 ≤ xn−k ≤ xn ≤ xn+k ≤ ·· · ≤ K,

A+1 ≤ yn−k ≤ yn ≤ yn+k ≤ ·· · ≤ L,
A+1 ≤ zn−k ≤ zn ≤ zn+k ≤ ·· · ≤ M,

(3.49)

for all n ≥ max{µ− 1,2k + 1}. From the inequalities in (3.49), we have that there
exists βi, γi and δi for all i ∈ {0,1, . . . ,k−1} such that

lim
n→∞

xnk+i = βi, lim
n→∞

ynk+i = γi, lim
n→∞

znk+i = δi. (3.50)

Hence,
(β0,γ0,δ0) ,(β1,γ1,δ1) , . . . ,(βk−1,γk−1,δk−1) (3.51)

is a periodic solution of (not necessarily prime period) system (1.5) with period k,
which contradicts with Theorem 2 in the case when the solution is not trivial solution.
So, the solution to system (1.5) converge to the equilibrium, which contradicts that
the solution to system (1.5) is diverging from the equilibrium. We complete the
proof. □

Lemma 1. [3] Assume that A > 1 and 0 < ε < A−1
(A+1)(k+1) , for k ∈ N. Then

2
(1−(k+1))ε(A+1) < 1.

The following theorem gives us the local stability of the unique equilibrium point
of the system (1.5) when A > 1.

Theorem 12. If A > 1 then the unique positive equilibrium (x̄, ȳ, z̄) = (A+1,A+
1,A+1) of system (1.5) is locally asymptotically stable.

Proof. For analysing the local stability of the unique equilibrium point of the sys-
tem (1.5), firstly, the system (1.5) is transformed into the following equivalent system
as

Xn+1 = F (Xn) , n ∈ N0, (3.52)
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where Xn =
(
x(1)n ,x(2)n , . . . ,x(k+1)

n ,y(1)n ,y(2)n , . . . ,y(k+1)
n ,z(1)n ,z(2)n , . . . ,z(k+1)

n
)T , where

x(1)n = xn,x
(2)
n = xn−1, . . . ,x

(k+1)
n = xn−k,

y(1)n = yn,y
(2)
n = yn−1, . . . ,y

(k+1)
n = yn−k,

z(1)n = zn,z
(2)
n = zn−1, . . . ,z

(k+1)
n = zn−k,

(3.53)

and F : [0,∞)3k+3 → [0,∞)3k+3 such that for all

X =
(

x(1),x(2), . . . ,x(k+1),y(1),y(2), . . . ,y(k+1),z(1),z(2), . . . ,z(k+1)
)
∈ [0,∞)3k+3 ,

F (X) =
(

f1 (X) ,x(2), . . . ,x(k+1), f2 (X) ,y(2), . . . ,y(k+1), f3 (X) ,z(2), . . . ,z(k+1)),
where

f1 (X) = A+
y(1)

y(k+1) , f2 (X) = A+
z(1)

z(k+1) , f3 (X) = A+
x(1)

x(k+1) .

Then, we have 
∂ f1

∂y(1)
(X) = 1

y(k+1) ,
∂ f1

∂y(k+1) (X) =− y(1)

(y(k+1))2 ,
∂ f2

∂z(1)
(X) = 1

z(k+1) ,
∂ f2

∂z(k+1) (X) =− z(1)

(z(k+1))2 ,
∂ f3

∂x(1)
(X) = 1

x(k+1) ,
∂ f3

∂x(k+1) (X) =− x(1)

(x(k+1))2 .

(3.54)

JF is the Jacobian matrix of F at the equilibrium point (x̄, ȳ, z̄) = (A+1,A+1,A+1),
which is given by

JF =



0 0 · · ·0 0 1
A+1 0 · · ·0 −1

A+1 0 0 · · ·0 0
1 0 · · ·0 0 0 0 · · ·0 0 0 0 · · ·0 0
0 1 · · ·0 0 0 0 · · ·0 0 0 0 · · ·0 0

0 0 · · ·1 0 0 0 · · ·0 0 0 0 · · ·0 0
0 0 · · ·0 0 0 0 · · ·0 0 1

A+1 0 · · ·0 −1
A+1

0 0 · · ·0 0 1 0 · · ·0 0 0 0 · · ·0 0
0 0 · · ·0 0 0 1 · · ·0 0 0 0 · · ·0 0

0 0 · · ·0 0 0 0 · · ·1 0 0 0 · · ·0 0
1

A+1 0 · · ·0 −1
A+1 0 0 · · ·0 0 0 0 · · ·0 0

0 0 · · ·0 0 0 0 · · ·0 0 1 0 · · ·0 0
0 0 · · ·0 0 0 0 · · ·0 0 0 1 · · ·0 0

0 0 · · ·0 0 0 0 · · ·0 0 0 0 · · ·1 0



(3.55)

Assume that λ1,λ2, . . . ,λ3k+3 are the eigenvalues of matrix JF and that
D = diag(d1,d2, . . . ,d3k+3) is a diagonal matrix, where

d1 = dk+2 = d2k+3 = 1, dm = dk+1+m = d2k+2+m = 1−mε,
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for m ∈ {2,3, . . . ,k+ 1} and 0 < ε < A−1
(k+1)(A+1) . From this and taking into account

the fact that 1−mε > 0, for all m ∈ {2,3, . . . ,k+1}, we conclude that the matrix D
is invertible. The matrix DBD−1 is given by

0 0 · · ·0 0 1
A+1

d1
dk+2

0 · · ·0 −1
A+1

d1
d2k+2

0 0 · · ·0 0
d2
d1

0 · · ·0 0 0 0 · · ·0 0 0 0 · · ·0 0

0 0 · · · dk+1
dk

0 0 0 · · ·0 0 0 0 · · ·0 0

0 0 · · ·0 0 0 0 · · ·0 0 1
A+1

dk+2
d2k+3

0 · · ·0 −1
A+1

dk+2
d3k+3

0 0 · · ·0 0
dk+3
dk+2

0 · · ·0 0 0 0 · · ·0 0

0 0 · · ·0 0 0 0 · · · d2k+2
d2k+1

0 0 0 · · ·0 0
1

A+1
d2k+3

d1
0 · · ·0 −1

A+1
d2k+3
dk+1

0 0 · · ·0 0 0 0 · · ·0 0

0 0 · · ·0 0 0 0 · · ·0 0
d2k+4
d2k+3

0 · · ·0 0

0 0 · · ·0 0 0 0 · · ·0 0 0 0 · · · d3k+3
d3k+2

0


(3.56)

To calculate the infinity norm of DJF D−1, we will show that inequality
max

1≤i≤3k+3
∑

3k+3
j=1 |ai j| < 1 holds. For this, by considering the fact that d1 > d2 > · · · >

dk+1, dk+2 > dk+3 > · · · > d2k+2 and d2k+3 > d2k+4 > · · · > d3k+3, we can write the
following inequalities for every j ∈ {1,2, . . . ,3k+2}

d j+1

d j
< 1 (3.57)

from which along with A > 1 and lemma (1), it yields

1
A+1

d1

dk+2
+

1
A+1

d1

d2k+2
=

1
A+1

+
1

(1− (k+1)ε)(A+1)

<
1

(1− (k+1)ε)(A+1)
+

1
(1− (k+1)ε)(A+1)

<
2

(1− (k+1)ε)(A+1)
< 1, (3.58)

1
A+1

dk+2

d2k+3
+

1
A+1

dk+2

d3k+3
=

1
A+1

+
1

(1− (k+1)ε)(A+1)

<
1

(1− (k+1)ε)(A+1)
+

1
(1− (k+1)ε)(A+1)

<
2

(1− (k+1)ε)(A+1)
< 1 (3.59)
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and
1

A+1
d2k+3

d1
+

1
A+1

d2k+3

dk+1
=

1
A+1

+
1

(1− (k+1)ε)(A+1)

<
1

(1− (k+1)ε)(A+1)
+

1
(1− (k+1)ε)(A+1)

<
2

(1− (k+1)ε)(A+1)
< 1. (3.60)

Since JF and DJF D−1 similar matrices, they have the same eigenvalues. Con-
sequently, it can easily seen that the following inequality holds

ρ(JF ) = max|λi|
≤ ||DJF D−1||∞
= max{d2d−1

1 , . . . ,dk+1d−1
k , . . . ,dk+3d−1

k+2, . . . ,d3k+3d−1
3k+2 < 1. (3.61)

This means that all eigenvalues of JF lie inside the unit disk. Therefore, the unique
equilibrium point (x̄, ȳ, z̄) = (A+1,A+1,A+1) of system (1.5) is locally asymptot-
ically stable. □

The following theorem gives us the global attractor to the unique positive equilib-
rium point of system (1.5) when A > 1.

Theorem 13. Assume that A > 1. Then the unique equilibrium point (A+ 1,A+
1,A+1) of system (1.5) is globally asymptotically stable.

Proof. Evidently, since the unique positive equilibrium (x̄, ȳ, z̄)= (A+1,A+1,A+
1) of system (1.5) is locally asymptotically stable when A > 1, we only prove that the
unique positive equilibrium (x̄, ȳ, z̄) = (A+1,A+1,A+1) of system (1.5) is a global
attractor. For this, firstly, assume that

l1 = limn→∞ infxn, u1 = limn→∞ supxn,

l2 = limn→∞ infyn, u2 = limn→∞ supyn,

l3 = limn→∞ infzn, u3 = limn→∞ supzn.

(3.62)

From (3.62) and system (1.5), it can be easily seen that the inequalities
1 < l1 ≤ u1,

1 < l2 ≤ u2,

1 < l3 ≤ u3,

(3.63)

and 
A+ l2

u2
≤ l1, u1 ≤ A+ u2

l2
,

A+ l3
u3

≤ l2, u2 ≤ A+ u3
l3
,

A+ l1
u1

≤ l3, u3 ≤ A+ u1
l1
,

(3.64)
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hold. From (3.63), we can write the following inequalities

Au2 + l2 ≤ l1u2,

l2u1 ≤ Al2 +u2,

Au3 + l3 ≤ l2u3,

l3u2 ≤ Al3 +u3,

Au1 + l1 ≤ l3u1,

l1u3 ≤ Al1 +u1.

(3.65)

Now, by multiplying both sides of the first inequality in (3.65) by u3 and both sides
of the sixth one in (3.65) by u2, then we can write

Au2u3 + l2u3 ≤ l1u2u3, u2u3l1 ≤ Al1u2 +u1u2, (3.66)

from which it follows that

Au2u3 + l2u3 ≤ Al1u2 +u1u2. (3.67)

Similarly, upon multiplying both sides of the second inequality in (3.65) by u3 and
both sides of the third one in (3.65) by u1, then we have

l2u1u3 ≤ Al2u3 +u2u3, Au1u3 + l3u1 ≤ l2u1u3, (3.68)

from which it follows that

Au1u3 + l3u1 ≤ Al2u3 +u2u3 (3.69)

Likewise, upon multiplying both sides of the fourth inequality (3.65) by u1 and both
sides of the fifth one in (3.65) by u2, we reach the following inequality

l3u1u2 ≤ Al3u1 +u1u3, Au1u2 + l1u2 ≤ l3u1u2, (3.70)

from which it follows that

Au1u2 + l1u2 ≤ Al3u1 +u1u3. (3.71)

From (3.67), (3.69) and (3.71), we have

Au2u3 + l2u3 +Au1u3 + l3u1 +Au1u2 + l1u2

≤ Al1u2 +u1u2 +Al2u3 +u2u3 +Al3u1 +u1u3 (3.72)

which implies that

Au3(u2− l2)+Au1(u3− l3)+Au2(u1− l1)−u3(u2− l2)−u1(u3− l3)−u2(u1− l1)≤ 0
(3.73)

and, consequently

(A−1)u3(u2 − l2)+(A−1)u1(u3 − l3)+(A−1)u2(u1 − l1)≤ 0. (3.74)

Since A > 1, from (3.74), we can reach the following results

u1 = l1, u2 = l2, u3 = l3, (3.75)
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from which along with (3.62), it follows that

lim
n→∞

xn = A+1, lim
n→∞

yn = A+1, lim
n→∞

zn = A+1, (3.76)

which is desired. □

4. RATE OF CONVERGENCE

In this section, we investigate the rate of convergence of a solutions which con-
verges to the equilibrium point (x̄, ȳ, z̄) = (A+1,A+1,A+1) of the system (1.5) in
the region of parameters described by A > 1. The following result gives the rate of
convergence of solutions of the system of difference equations

Un+1 = (A+Bn)Un (4.1)

where Un is a (3k+3)-dimensional vector, A ∈ C(3k+3)×(3k+3) is a constant matrix
and B : Z+ →C(3k+3)×(3k+3) is a matrix function providing

∥Bn∥→ 0, as n → ∞, (4.2)

where ∥.∥ denotes any matrix norm.

Theorem 14. (Perron’s Theorem, see, [14]) Assume that condition (4.2) holds. If
Un is a solution of (4.1), then either Un = 0 for all large n or

ρ = lim
n→∞

∥Un+1∥
∥Un∥

or
ρ = lim

n→∞
(∥Un∥)

1
n

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 15. Assume that {(xn,yn,zn)}n≥−k is a solution of system (1.5) such that
the equalities in (3.76) are provided. Then, the error vector

en =



e1
n

e1
n−1
...

e1
n−k
e2

n
e2

n−1
...

e2
n−k
e3

n
e3

n−1
...

e3
n−k



=



xn − x̄
xn−1 − x̄

...
xn−k − x̄
yn − ȳ

yn−1 − ȳ
...

yn−k − ȳ
zn − z̄

zn−1 − z̄
...

zn−k − x̄


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of every solution of system (1.5) satisfies both of the asymptotic relations for some
i ∈ {1,2, . . . ,k},

ρ = lim
n→∞

(||Un||)
1
n =|λiJF(x̄, ȳ, z̄)|, ρ = lim

n→∞

||Un+1||
||Un||

=|λiJF(x̄, ȳ, z̄)|, (4.3)

where ρ is equal to the modulus of one of the eigenvalues of JF about (x̄, ȳ, z̄).

Proof. Let {(xn,yn,zn)}∞
n=−k be any solution to system (1.5) that satisfies the fol-

lowing conditions

lim
n→∞

xn = x̄ = A+1, lim
n→∞

yn = ȳ = A+1, lim
n→∞

zn = z̄ = A+1. (4.4)

To obtain the error terms, one gets

xn+1 − x̄ = A+
yn

yn−k
−A−1 =

yn − yn−k

yn−k
=

yn − ȳ
yn−k

− yn−k − ȳ
yn−k

, (4.5)

yn+1 − ȳ = A+
zn

zn−k
−A−1 =

zn − zn−k

zn−k
=

zn − z̄
zn−k

− zn−k − z̄
zn−k

, (4.6)

zn+1 − z̄ = A+
xn

xn−k
−A−1 =

xn − xn−k

xn−k
=

xn − x̄
xn−k

− xn−k − x̄
xn−k

, (4.7)

for i ∈ {1,2, . . . ,k}. Now, let

e1
n = xn − x̄, e2

n = yn − ȳ, e3
n = zn − z̄, (4.8)

and then the equations in (4.5)-(4.7) become

e1
n+1 =

e2
n

yn−k
−

e2
n−k

yn−k
, (4.9)

e2
n+1 =

e3
n

zn−k
−

e3
n−k

zn−k
, (4.10)

e3
n+1 =

e1
n

xn−k
−

e1
n−k

xn−k
. (4.11)

Now, we let A1i = C1i = A2i = B2i = B3i = C3i = 0, for i ∈ {0,1, . . . ,k}, B10 =
1

yn−k
, B1 j = 0, for j ∈ {1,2, . . . ,k − 1}, B1k = − 1

yn−k
, C20 = 1

zn−k
, C2 j = 0, for j ∈

{1,2, . . . ,k − 1}, C2k = − 1
zn−k

, A30 = 1
xn−k

, A3 j = 0, for j ∈ {1,2, . . . ,k − 1} and
A3k =− 1

xn−k
. Then, the equations in (4.9)-(4.11) can be written the next form of

e1
n+1 =

k

∑
i=0

A1ie1
n−i +

k

∑
i=0

B1ie2
n−i +

k

∑
i=0

C1ie3
n−i, (4.12)

e2
n+1 =

k

∑
i=0

A2ie1
n−i +

k

∑
i=0

B2ie2
n−i +

k

∑
i=0

C2ie3
n−i, (4.13)
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e3
n+1 =

k

∑
i=0

A3ie1
n−i +

k

∑
i=0

B3ie2
n−i +

k

∑
i=0

C3ie3
n−i. (4.14)

Then we get

lim
n→∞

A1i = lim
n→∞

C1i = lim
n→∞

A2i = lim
n→∞

B2i = lim
n→∞

B3i = lim
n→∞

C3i = 0, (4.15)

for i ∈ {0,1, . . . ,k},

lim
n→∞

B10 =
1
ȳ
, lim

n→∞
C20 =

1
z̄
, lim

n→∞
A30 =

1
x̄
, (4.16)

lim
n→∞

B1 j = lim
n→∞

C2 j = lim
n→∞

A3 j = 0, (4.17)

for j ∈ {1,2, . . . ,k−1}, and

lim
n→∞

B1k =−1
ȳ
, lim

n→∞
C2k =−1

z̄
, lim

n→∞
A3k =−1

x̄
, (4.18)

that is, 
B10 =

1
ȳ +an, B1k =−1

ȳ +bn,

C20 =
1
z̄ +αn, C2k =−1

z̄ +βn,

A30 =
1
x̄ + γn, A3k =−1

x̄ +δn,

(4.19)

where an → 0, bn → 0, αn → 0, βn → 0, γn → 0, δn → 0, for n→∞. Then, we obtain
the system

En+1 = (A+Bn)En, (4.20)
where En =(e1

n,e
1
n−1, . . . ,e

1
n−k,e

2
n,e

2
n−1, . . . ,e

2
n−k,e

3
n,e

3
n−1, . . . ,e

3
n−k)

T and, the constant
matrix A is of the form

A =



0 0 · · ·0 0 an 0 · · ·0 bn 0 0 · · ·0 0
1 0 · · ·0 0 0 0 · · ·0 0 0 0 · · ·0 0
0 1 · · ·0 0 0 0 · · ·0 0 0 0 · · ·0 0

0 0 · · ·1 0 0 0 · · ·0 0 0 0 · · ·0 0
0 0 · · ·0 0 0 0 · · ·0 0 0 αn · · ·0 βn
0 0 · · ·0 0 1 0 · · ·0 0 0 0 · · ·0 0
0 0 · · ·0 0 0 1 · · ·0 0 0 0 · · ·0 0

0 0 · · ·0 0 0 0 · · ·1 0 0 0 · · ·0 0
γn 0 · · ·0 δn 0 0 · · ·0 0 0 0 · · ·0 0
0 0 · · ·0 0 0 0 · · ·0 0 1 0 · · ·0 0
0 0 · · ·0 0 0 0 · · ·0 0 0 1 · · ·0 0

0 0 · · ·0 0 0 0 · · ·0 0 0 0 · · ·1 0



(4.21)
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and

Bn =



0 0 · · ·0 0 1
A+1 0 · · ·0 −1

A+1 0 0 · · ·0 0
1 0 · · ·0 0 0 0 · · ·0 0 0 0 · · ·0 0
0 1 · · ·0 0 0 0 · · ·0 0 0 0 · · ·0 0

0 0 · · ·1 0 0 0 · · ·0 0 0 0 · · ·0 0
0 0 · · ·0 0 0 0 · · ·0 0 1

A+1 0 · · ·0 −1
A+1

0 0 · · ·0 0 1 0 · · ·0 0 0 0 · · ·0 0
0 0 · · ·0 0 0 1 · · ·0 0 0 0 · · ·0 0

0 0 · · ·0 0 0 0 · · ·1 0 0 0 · · ·0 0
1

A+1 0 · · ·0 −1
A+1 0 0 · · ·0 0 0 0 · · ·0 0

0 0 · · ·0 0 0 0 · · ·0 0 1 0 · · ·0 0
0 0 · · ·0 0 0 0 · · ·0 0 0 1 · · ·0 0

0 0 · · ·0 0 0 0 · · ·0 0 0 0 · · ·1 0



(4.22)

where ∥Bn∥→ 0 as n→∞. The matrix A is equal to the JF . So, by applying Theorem
14 to system (1.5), the result holds. □

5. NUMERICAL EXAMPLE

To support our theoretical results, we will present some interesting numerical ex-
amples. These examples present different types of qualitative behavior of solutions
to system (1.5).

Example 1. Consider the system (1.5) with the initial values x−2 = 2.1, x−1 = 0.67,
x0 = 10.21, y−2 = 6.45, y−1 = 9.38, y0 = 4.45, z−2 = 0.47, z−1 = 4.41 and z0 = 0.67.
Further, we take the parameters k = 2 and A = 1.5, i.e.,

0 20 40 60 80 100 120 140

0

5

10

15

n

x
[n
],
y
[n
],
z

FIGURE 1. The plot of system (1.5) when A > 1 and k = 2.
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This figure shows the global attractivity of the equilibrium point

(x̄, ȳ, z̄) = (2.5,2.5,2.5)

of system (1.5).

Example 2. Consider the system (1.5) with the initial values x−3 = 3.7, x−2 = 0.1,
x−1 = 5.47, x0 = 1.17, y−3 = 0.45, y−2 = 1.1, y−1 = 4.38, y0 = 0.87, z−3 = 1.8,
z−2 = 0.67, z−1 = 0.41 and z0 = 11.28. Further, we take the parameters k = 3 and
A = 1, i.e.,

0 20 40 60 80 100 120 140

0

20

40

60

80

n

x
[n
],
y
[n
],
z[
n
]

FIGURE 2. The plot of system (1.5) when A = 1 and k = 3.

Example 3. Consider the system (1.5) with the initial values x−4 = 2.41, x−3 =
3.39, x−2 = 0.27, x−1 = 1.91, x0 = 0.19, y−4 = 7.82, y−3 = 2.71, y−2 = 4.33, y−1 =
0.38, y0 = 0.01, z−4 = 0.82, z−3 = 2.73, z−2 = 0.08, z−1 = 0.31 and z0 = 5.28.
Further, we take the parameters k = 4 and A = 0.19, i.e.,

0 20 40 60 80 100 120 140

0

1×10
14

2×10
14

3×10
14

4×10
14

5×10
14

6×10
14

7×10
14

FIGURE 3. The plot of system (1.5) when A < 1 and k = 4.
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This figure shows that the equilibrium point (x̄, ȳ, z̄) = (1.19,1.19,1.19) of system
(1.5) is not global asymptotic stable. Further, system (1.5) has unbounded solutions.

6. CONCLUSION

This study represents a contribution to the analysis of three-dimensional concrete
nonlinear system of difference equations. This paper mainly discusses the dynamic
properties of a class of higher-order system of difference equations by utilizing semi-
cycle analysis, stability theory and rate of convergence. The main results are as fol-
lows.

i) From semi-cycle analysis of system (1.5), it is obtained that system (1.5)
has no non-oscillatory negative solutions, no decreasing non-oscillatory solu-
tions, no nontrivial periodic solutions of period k. It is also obtained that the
solution of system (1.5) is either non-oscillatory solution or it oscillates about
the equilibrium point of system (1.5), with semi-cycles having k+1 terms.

ii) When A ≥ 1, the positive solution of system (1.5) is bounded and persists.
Further system (1.5) has no positive nontrivial solution prime period-two in
this case A = 1.

iii) When A ≥ 1, system (1.5) has no non-oscillatory positive solutions.
iv) When A > 1, the unique equilibrium point of system (1.5) is globally asymp-

totically stable.
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