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Abstract. In this work, we develop and analyze a finite difference-based numerical scheme for
a system of time-fractional Volterra-type integro-differential equations. The fractional derivative
of order α with α ∈ (0,1) is considered in the Caputo sense. We provide sufficient conditions
to ensure the existence of a unique solution. To construct the difference scheme, classical L1
discretization is employed for the fractional operator, and the integral part is approximated us-
ing the composite trapezoidal rule. The convergence analysis and error estimates are discussed.
Having a mild singularity in the solution of the system, the proposed scheme achieves only α

order accuracy. In the case of sufficiently smooth solutions, it achieves (2−α) order of accur-
acy. Finally, several numerical experiments are presented to support our theoretical findings and
validate the proposed scheme.
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1. INTRODUCTION

Fractional calculus is a generalization of ordinary differentiation and integration
to arbitrary orders and has become an essential branch of mathematics. The non-
local properties of fractional calculus allow us to model physical phenomena that
have a dependence on time instants and previous histories simultaneously. In the last
few years, fractional order differential equations (FDEs) and fractional order integro-
differential equations (FIDEs) have attracted great attention due to their frequent ap-
pearance in various fields such as physics [6], electrochemistry [12], biology [13],
viscoelasticity [16], engineering, and other area of applied mathematics. Likewise
systems of integro-differential equations play a pivotal role in mathematical model-
ing of physical phenomena of various field of science and engineering, such as mag-
netic field, electric-circuit analysis, nano-hydrodynamics, control of systems, glass-
forming process, dropwise condensation, statistics of polymer chains, wind ripple in
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the desert, modeling the competition between tumor cells and the immune system,
modeling of fluid waves in to oceanography, the activity of interacting inhibitory and
excitatory neurons, hereditary properties of various materials and processes etc. for
more details, one may refer [2, 3, 5, 7] and references therein. Consequently, enorm-
ous attention has been paid by the researchers to develop approximate and numerical
techniques for the solutions of FIDEs of physical interest since most FIDEs has yet to
have an exact analytical form of solutions. For instance: Rawashdeh, in [20], applied
the spline collocation method to obtain the numerical solution of FIDEs. In [18], Naz-
ari and Shahmorad used the fractional differential transform method to approximate
FIDEs with nonlocal boundary conditions. Arqub et al. developed a novel high-order
algorithm that reproduces kernel approximation to solve Volterra integro-differential
equations involving Atangana–Baleanu (ABC)-fractional derivative in [4]. A class
of FIDEs was solved by Panda et al. in [19] using Adomian decomposition and ho-
motopy perturbation methods. The solution of a fractional order differential/integro-
differential equation generally has singularity in time [14]. However, the nature of
the singularity is dependent on the regularity of the solution. We called the singular-
ity weak/mild if the first derivative of the solution blows up as t → 0+. Recently, in
[21] the authors proposed a finite difference scheme to approximate the Volterra type
FIDEs having weak singularity. In [8], Ghosh and Mohapatra extended the previous
work and showed a comparison study using two schemes based on the L1 and L1-2
discretization techniques.

In this article, we consider the following system of fractional order Volterra integro-
differential equations (SFVIDEs):{

Dα
t U(t)+A(t)U(t)+λ

∫ t
0 K(t,s)U(s)ds = F(t), t ∈ (0,T ],

U(0) = U0,
(1.1)

where Dα
t denotes the Caputo fractional differential operator of order α ∈ (0,1), T ∈

R+, U(t) = [u(1)(t),u(2)(t), . . . ,u(n)(t)] is the unknown vector function and{
F(t) = [ f (1)(t), f (2)(t), . . . , f (n)(t)], λ = [λ1,λ2, . . . ,λn], U0 = [U01,U02, . . . ,U0n],

A(t) = [ai j(t)], K(t,s) = [Ki j(t,s)], i, j = 1(1)n.
(1.2)

ai j : [0,T ]→R,Ki j : [0,T ]× [0,T ]→ R for i, j = 1(1)n, and the vector function F(t)
are known and sufficiently smooth. The parameter λi ∈ R. The model problem (1.1)
in the present work is an academic example. However, system of integro-differential
equations appear in many physical applications [5, 7].

In recent years, a large number of papers have been devoted to approximating a
system of linear and nonlinear integro-differential equations numerically; in most
cases, finding an exact analytic solution is usually not accessible. To name a few:
Momani and Qaralleh [17] implemented the Adomian decomposition method for ap-
proximating the solution of system of fractional integro-differential equations. In
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[25], Zurigat et al. used the homotopy analysis method to solve a system of linear
and nonlinear fractional integro-differential equations. Akbar et al. employed an ex-
tension of the optimal homotopy asymptotic method to the fractional order integro-
differential equations system in [1]. In [24], Youbi et al. investigated the approx-
imate analytic solutions with the help of reproducing kernel function for a system
of Volterra type FIDEs involving Caputo-Fabrizio derivative. In [11], Chebyshev
pseudo-spectral collocation method is used to numerically solve a system of linear
and nonlinear fractional integro-differential equations of Volterra type. Heydari et
al. [10] presented the Chebyshev wavelet computational method by developing the
operational matrix with the help of shifted Chebyshev polynomials for solving a
class of system of nonlinear singular fractional Volterra integro-differential equa-
tions. Hesameddini and Shahbazi obtained the numerical solution of a system of
fractional integro–differential equations based on the hybrid Bernstein Block–Pulse
functions in [9]. In their study, the Riemann–Liouville fractional integral operator
for hybrid Bernstein Block–Pulse functions were proposed and approximated by the
Gauss quadrature formula. In [23], Wang et al. established an operational matrix
using Bernoulli wavelets for solving coupled system of nonlinear fractional order
integro-differential equations.

Observing the literature, we find that the majority of the solution methods are semi-
analytical or spectral/collocation based and have limitations. Meanwhile, a little at-
tempt has been made to solve a system of FIDEs using the finite difference technique.
The article aims to introduce a numerical scheme by combining the well-known L1
technique and the composite trapezoidal rule to solve the fractional order system
(1.1). The advantage of using the L1 technique is it uses the linear interpolation ap-
proximation for the integrand function. As a result, twice continuous differentiability
is enough to achieve the optimal convergence rate. The simplicity of implementa-
tion and the well established convergence and stability analysis are also significant
advantages of the L1 technique. The rest of this paper is organized as follows: In
Section 2, we introduce few basic definitions of fractional calculus and establish the
uniqueness of the solution. The difference scheme is derived in Section 3. Section
4 deals with the convergence analysis and error bounds. In Section 5, numerical
experiments have been conducted, and concluding remarks are drawn in Section 6.

Notation 1. On a domain Ω, C k(Ω) represents the set of k times continuously
differentiable functions. The positive constant C appears in several inequalities. Γ(·)
denotes Euler Gamma function.

2. PRELIMINARIES

Definition 1. Let Y = C ([0,T ],R) be the Banach space of all real valued continu-
ous functions, then the supremum norm is defined as:

∥y(t)∥ := sup
t∈[0,T ]

|y(t)|.
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Definition 2. A real function φ(x) is said to be in the space Cµ, µ∈R if there exists
a real number ξ > µ such that φ(x) = xξφ1(x) where φ1(x) ∈ C (R). Clearly, Cµ ⊂ Cγ

if γ ≤ µ. A function φ(x) is said to be in the space C k
µ , k ∈ N∪{0}, if φ(k)(x) ∈ Cµ.

Definition 3. The Riemann-Liouville fractional integral of ϕ(x) ∈ C [a,b] of order
α̃ ∈ R+ is defined as:

Jα̃
x ϕ(x) =

1
Γ(α̃)

∫ x

a
(x− s)α̃−1

ϕ(s)ds.

Definition 4. For m − 1 < α̃ ≤ m, the Caputo fractional derivative of ϕ(x) ∈
C m[a,b] of order α̃ ∈ R+ is defined as:

Dα̃
x ϕ(x) = Jm−α̃

x ϕ
(m)(x) =


1

Γ(m− α̃)

∫ x

a

ϕ(m)(s)
(x− s)1−m+α̃

ds, if m−1 < α̃ < m,

ϕ(m)(x), if α̃ = m.

Theorem 1. If
(α+1)∥A∥+λ∥K∥

Γ(2+α)
< 1 then (1.1) has unique solution in [0,T ].

Proof. The Banach fixed point theorem is used to prove this theorem. Applying
Jα

x from both sides of (1.1), we have U(t) = ΨU(t) for t ∈ [0,T ], where the operator
Ψ : C ([0,T ],Rn)→ Rn for each U ∈ C ([0,T ],Rn) and t ∈ [0,T ] is defined as:

ΨU(t)≡ U0 + Jα
t F(t)− Jα

t {A(t)U(t)}−λJα
t

{∫ t

0
K(t,s)U(s)ds

}
.

Our aim is to show that Ψ is a contraction mapping. For any U1(t), U2(t) ∈ C ([0,T ],
Rn), we have∥∥ΨU1(t)−ΨU2(t)

∥∥
=

∥∥∥∥Jα
t
{

A(t)
(
U1(t)−U2(t)

)}
+λJα

t

{∫ t

0
K(t,s)

(
U1(s)−U2(s)

)
ds
}∥∥∥∥

≤ 1
Γ(α)

∫ t

0
(t − s)α−1∥∥A(s)

∥∥∥∥U1(s)−U2(s)
∥∥ds

+
1

Γ(α)

∫ t

0
(t − s)α−1

∫ s

0

∥∥K(s,z)
∥∥∥∥U1(z)−U2(z)

∥∥dzds

≤ ∥A∥
Γ(α+1)

∥U1(t)−U2(t)∥+
λ∥K∥
Γ(α)

∫ t

0
(t − s)α−1

∫ s

0
∥U1(z)−U2(z)∥dzds

≤ (α+1)∥A∥+λ∥K∥
Γ(2+α)

∥∥U1(t)−U2(t)
∥∥≤

∥∥U1(t)−U2(t)
∥∥.

Hence, Ψ is a contraction mapping. The Banach fixed point theorem implies the
problem (1.1) has a unique solution for all t ∈ [0,T ]. □
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3. PROPOSED SCHEME

The problem (1.1) is discretized by the combination of the L1 technique and the
composite trapezoidal rule. Set N ∈N. The uniform mesh t j = jτ for j = 0(1)N with
equal step length τ = T/N. The computed solution of u(p) at the mesh point t j is
denotes U (p)

j .

The Caputo derivative Dα
t u(p)(t) at t j for j = 1(1)N can be written as:

Dα
t u(p)(t j) =

1
Γ(1−α)

j−1

∑
k=0

tk+1∫
s=tk

(t j − s)−α(u(p)(s))′ds,

for p = 1(1)n, which can be discretized as follows [8, 15, 22]:

Dα
Nu(p)(t j) =

1
Γ(1−α)

j−1

∑
k=0

u(p)(tk+1)−u(p)(tk)
τ

tk+1∫
s=tk

(t j − s)−αds

=
τ−α

Γ(2−α)

j−1

∑
k=0

[
u(p)(tk+1)−u(p)(tk)

]
b j−k + ε

(p)
j , (3.1)

where ε
(p)
j = (Dα

t −Dα
N)u

(p)(t j) and bq = q1−α − (q− 1)1−α for q = 1(1)N. The
integral for j = 1(1)N is

Itu(p)(t j) =
∫ t j

t0

n

∑
i=1

Kpi(t j,s)u(i)(s)ds =
n

∑
i=1

j−1

∑
m=0

∫ tm+1

tm
Kpi(t j,s)u(i)(s)ds,

which can be approximated by applying the composite trapezoidal rule as:

INu(p)(t j) =
τ

2

n

∑
i=1

j−1

∑
m=0

[
Kpi(t j, tm)u(i)(tm)+Kpi(t j, tm+1)u(i)(tm+1)

]
+R(p)

j , (3.2)

where R(p)
j = (It − IN)u(p)(t j). Using (3.1) and (3.2), the model (1.1) transformed to Dα

Nu(p)(t j)+
n
∑

i=1
api(t j)u(i)(t j)+λpINu(p)(t j) = f (p)(t j)+E (p)

j ,

u(p)(t0) = ηp,
(3.3)

for j = 1(1)N, and each p = 1(1)n. The remainder term E (p)
j is given by E (p)

j =

ε
(p)
j +R(p)

j . Neglecting E (p)
j , the discrete problem (3.3) is reduced to

f (p)
j = µ

j−1
∑

k=0

(
U (p)

k+1 −U (p)
k

)
d j−k +

n
∑

i=1
(api) jU

(i)
j

+
λpτ

2

j−1
∑

m=0

n
∑

i=1

{
Kpi(t j, tm)U

(i)
m +Kpi(t j, tm+1)U

(i)
m+1

}
,

U (p)
0 = ηp,

(3.4)
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for j = 1(1)N, for each p = 1(1)n. The difference scheme (3.4) is explicit since one
can easily find the solution from the following recursive relation:

U (p)
j = ∏

−1
[

f (p)
j +µ

[
d1U (p)

j−1 +
j−2

∑
k=0

(
U (p)

k −U (p)
k+1

)
d j−k

]

−
n

∑
i=1,i̸=p

(api) jU
(i)
j −

λpτ

2
Kpp(t j, t j−1)U

(p)
j−1

−
λpτ

2

j−2

∑
m=0

n

∑
i=1

{
Kpi(t j, tm)U

(i)
m +Kpi(t j, tm+1)U

(i)
m+1

}
−

λpτ

2

n

∑
i=1,i̸=p

{
Kpi(t j, t j−1)U

(i)
j−1 +Kpi(t j, t j)U

(i)
j

}]
,

U (p)
0 = ηp,

(3.5)

where µ =
h−α

Γ(2−α)
, ∏ = µd1 +(app) j +

λpτ

2
Kpp(t j, t j). Alternatively, it is possible

to express (3.4) as a N ×N linear system of equations:

G(p)U (p) = F(p) for p = 1(1)n, (3.6)

where U (p) = [U (p)
1 ,U (p)

2 , . . . ,U (p)
N ], F(p) = [F(p)

1 ,F(p)
2 , . . . ,F(p)

N ] and for i = 1(1)N,

G(p)
i,i = µb1 +(aii) j +

λpτ

2
Kii(x j,x j),

G(p)
i,k = (aik) j +

λpτ

2
Kik(x j,x j), k = i+1, i+2, . . . ,n,

G( j)
l,i = (ail) j +

λih
2

Kil(x j,x j), l = 1,2, . . . , i−1,

F( j)
i = f (i)j +µb1U (i)

j−1 +
j−2

∑
k=0

(
U (i)

k −U (i)
k+1

)
b j−k

− λih
2

n

∑
k=1

[ j−1

∑
m=0

Kik(x j,xm)U
(i)
m −

j−2

∑
m=0

Kik(x j,xm+1)U
(i)
m+1

]
.

4. ERROR ANALYSIS

This section establishes the convergence result and estimates the global error of
the proposed scheme (3.4).

Lemma 1. The truncation error for the discretization of the Caputo fractional
derivative for j = 1(1)N satisfies

|ε(p)
j | ≤

{
Cτ2−α, if u(p)(t) ∈ C 2[0,T ],

Cτα, if u(p)(t) ∈ Cα[0,T ].
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Proof. Let u(p)(t) ∈ C 2[0,T ], then we have∣∣∣ε(p)
j

∣∣∣= ∣∣(Dα
t −Dα

N)u
p(t j)

∣∣
=

∣∣∣∣∣ 1
Γ(1−α)

j−1

∑
k=0

∫ tk+1

tk
(t j − s)−α

[
du(p)(s)

ds
− u(p)(tk+1)−u(p)(tk)

τ

]
ds

∣∣∣∣∣
≤C

∣∣∣∣∣ 1
Γ(1−α)

j−1

∑
k=0

∫ tk+1

tk

t j + t j−1 −2s
(t j − s)α

ds+O(τ2)

∣∣∣∣∣ .
From [15], we get

∣∣∣ 1
Γ(1−α)

j−1
∑

k=0

∫ tk+1
tk

t j + t j−1 −2s
(t j − s)α

ds
∣∣∣≤ 2τ2−α. This however means

|ε(p)
j | ≤Cτ2−α.

If u(p)(t) ∈ Cα[0,T ], from [22] we have
∣∣∣ε(p)

j

∣∣∣= ∣∣(Dα
t −Dα

N)u
p(t j)

∣∣≤Cτα. Hence,
completes the proof. □

Lemma 2. For each p = 1(1)n the remainder R(p)
j satisfies |R(p)

j | ≤ CT τ2 for
j = 1(1)N.

Proof. Since Ki j(t,s) ∈ C ∞([0,T ]× [0,T ]) for i, j = 1(1)n and u(p)(t) ∈ C 2[0,T ]∩

C ∞(0,T ], there exist constants C1,C2 > 0 such that |Ki j(t,s)| ≤C1and
∣∣∣dqu(p)

dtq (t)
∣∣∣≤

C2 for q = 0,1,2. Now, we have

|R(p)
j |= |(It − IN)u(p)(t j)|=

n

∑
i=1

∣∣∣∣∣ j−1

∑
m=0

∫ tm+1

tm
Kpi(t j,s)u(i)(s)ds

− τ

2

j−1

∑
m=0

[
Kpi(t j, tm)U

(i)
m +Kpi(t j, tm+1)U

(i)
m+1

]∣∣∣∣∣
≤C1

n

∑
i=1

∣∣∣∣∣ j−1

∑
m=0

∫ tm+1

tm
u(i)(s)ds− τ

2

j−1

∑
m=0

(
U (i)

m +U (i)
m+1

)∣∣∣∣∣ .
Using the Taylor series, we get

|R(p)
j | ≤C1

n

∑
i=1

∣∣∣∣∣ j−1

∑
m=0

[(
τU (i)

m +
τ2

2!
(U (i))

′
m +

τ3

3!
(U (i))

′′
m +

τ4

4!
(U (i))

′′′
m + · · ·

)
− τ

2

(
U (i)

m +U (i)
m + τ(U (i))

′
m +

τ2

2!
(U (i))

′′
m +

τ3

3!
(U (i))

′′′
m + · · ·

)]∣∣∣∣
≤C1

n

∑
i=1

∣∣∣∣∣ j−1

∑
m=0

[
τ3

12
(U (i))

′′
m − τ4

24
(U (i))

′′′
m + . . .

]∣∣∣∣∣
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≤C1C2

n

∑
i=1

jτ3 ≤CNτ
3 ≤CT τ

2,

which is our desired bound. □

Denote e(p)
j =

∣∣u(p)(t j)−U (p)
j

∣∣ for j = 1(1)N. From (3.3) and (3.4), we get Dα
Ne(p)

j +
n
∑

i=1
api(t j)e

(i)
j +λpINe(p)

j = E (p)
j for j = 1(1)N,

e(p)
0 = 0.

(4.1)

Lemma 3. For any mesh function {U (p)
j }N

j=0 with U (p)
0 = 0, we have∣∣U (p)

j

∣∣≤ max
k=1(1) j

{
ταΓ(2−α)

bk
Dα

N

∣∣U (p)
k

∣∣} for j = 1(1)N.

Proof. Let max
k=1(1) j

∣∣U (p)
k

∣∣= ∣∣U (p)
q

∣∣ for some q ∈ {1,2, . . . , j}. Since U (p)
0 = 0, (3.1)

yields

Dα
N

∣∣U (p)
q

∣∣= τ−α

Γ(2−α)

{∣∣U (p)
q

∣∣− q−1

∑
k=1

(
bk −bk+1

)∣∣U (p)
q−k

∣∣} .

Now, b1 = 1 and bk > bk+1 for all k ≥ 1 implies that

Dα
N

∣∣U (p)
q

∣∣≥ τ−α

Γ(2−α)

{∣∣U (p)
q

∣∣− q−1

∑
k=1

(
bk −bk+1

)∣∣U (p)
q

∣∣}≥ τ−α

Γ(2−α)
bq
∣∣U (p)

q
∣∣.

Therefore,
∣∣U (p)

q
∣∣≤ ταΓ(2−α)

bq
Dα

N

∣∣U (p)
q

∣∣. Hence, the desired result. □

Theorem 2. If {u(p)(t j)}N
j=1 be the true solution and {U (p)

j }N
j=1 be the approxim-

ate solution of the problem (1.1) for each p = 1(1)n, then we have∣∣e(p)
j

∣∣≤{
CT α(τ2−α +T τ2), if u(p)(t) ∈ C 2[0,T ],
CT α(τα +T τ2), if u(p)(t) ∈ Cα[0,T ].

Proof. Multiplying (4.1) by e(p)
j , then using (3.1), we obtain

µ
∣∣e(p)

j

∣∣2 + n

∑
i=1

∣∣api(t j)
∣∣∣∣e(i)j

∣∣∣∣e(p)
j

∣∣+ λpτ

2

n

∑
i=1

j−1

∑
m=0

[∣∣Kpi(t j, tm)
∣∣∣∣e(i)m

∣∣∣∣e(p)
j

∣∣
+
∣∣Kpi(t j, tm+1)

∣∣∣∣e(i)m+1

∣∣∣∣e(p)
j

∣∣]
≤
∣∣E (p)

j

∣∣∣∣e(p)
j

∣∣+µ
j−1

∑
k=1

(
bk −bk+1

)∣∣e(p)
j−k

∣∣∣∣e(p)
j

∣∣.



NUMERICAL SCHEME FOR SYSTEM OF FVIDE . . . 403

Therefore, µ
∣∣e(p)

j

∣∣2 ≤ ∣∣E (p)
j

∣∣∣∣e(p)
j

∣∣+µ
j−1
∑

k=1

(
bk −bk+1

)∣∣e(p)
j−k

∣∣∣∣e(p)
j

∣∣. Dividing by
∣∣e(p)

j

∣∣,
we get Dα

N

∣∣e(p)
j

∣∣≤ ∣∣E (p)
j

∣∣. Lemmas 1 and 2 gives∣∣E (p)
j

∣∣≤ ∣∣ε(p)
j

∣∣+ ∣∣R(p)
j

∣∣≤{
C(τ2−α +T τ2), if u(p)(t) ∈ C 2[0,T ],
C(τα +T τ2), if u(p)(t) ∈ Cα[0,T ].

Since b1 = 1 and bq > bq+1 for all q ≥ 1. The mean value theorem implies that

(1−α)q−α ≤ bq ≤ (1−α)(q−1)−α for q ≥ 2.

Using Lemma 3, we obtain∣∣e(p)
j

∣∣≤ max
k=1,2,..., j

{
ταΓ(2−α)

bk

∣∣E (p)
j

∣∣}
≤ ταΓ(2−α)

(1−α)N−α

{
C(τ2−α +T τ2), if u(p)(t) ∈ C 2[0,T ],
C(τα +T τ2), if u(p)(t) ∈ Cα[0,T ].

≤CT α

{
τ2−α +T τ2, if u(p)(t) ∈ C 2[0,T ],
τα +T τ2, if u(p)(t) ∈ Cα[0,T ].

This proves the theorem. □

5. NUMERICAL EXPERIMENT

The following two examples are in good agreement with theoretical establish-
ments. The computational results are presented through several tables and graphs.

Example 1. Consider the following system:
Dα

t u(1)(t)+u(1)(t)+u(2)(t)−
∫ t

0(t − s)(u(1)(s)+u(2)(s))ds = f (1)(t),

Dα
t u(2)(t)+u(1)(t)+u(2)(t)+

∫ t
0(s− t)(u(1)(s)−u(2)(s))ds = f (2)(t),

for t ∈ (0,1], IC : u(1)(0) = 0 = u(2)(0).

We choose f (i)(t), i = 1,2, so that the exact solution is u(1)(t) = t p+α, u(2)(t) =
−tq+α for p,q ∈ R. Compute the maximum error and the corresponding rate of con-

vergence defined as: ΣN = max0≤ j≤N
∣∣u(i)(t j)−u(i)j

∣∣; ρN = log2

(
ΣN

Σ2N

)
.

Case-I (p = 2,q = 3): Figure 1 shows the comparison between the exact and the
approximate solution with α = 0.5, N = 32 for Example 1. The graphs of approxim-
ate solutions for different α with N = 16 are presented in Figure 2. The log-log plots
of the numerical error is displayed in Figure 3. ΣM and ρM are shown in Table 1 for
u(1)(t) and u(2)(t).

Case-II (p = 0,q = 0): Figure 4 shows the comparison between the exact and ap-
proximate solution with α = 0.5, N = 32 for Example 1. The graphs of approximate
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FIGURE 1. The exact and approximate solutions with N = 32, α =
0.5 for Example 1
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FIGURE 2. The approximate solutions with N = 16 for Example 1
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FIGURE 3. Log–log plots of ΣM with α = 0.4 for Example 1

solutions for different α with N = 16 are presented in Figure 5. From these graphs,
it is clear that the solutions have mild singularity near t = 0. The log-log plots of the
numerical errors displayed in Figure 6. ΣN and ρN are shown in Table 2 for u(1)(t)
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TABLE 1. ΣM and ρM with p = 2, q = 3 for Example 1

α/M 32 64 128 256 512 1024

0.1

u(1)(t) 2.054E-04 6.219E-05 1.845E-05 5.387E-06 1.554E-06 4.442E-07

1.723 1.753 1.776 1.793 1.807 1.818

u(2)(t) 2.563E-04 8.013E-05 2.431E-05 7.223E-06 2.112E-06 6.101E-07

1.678 1.721 1.751 1.774 1.792 1.806

0.3

u(1)(t) 1.440E-03 4.684E-04 1.504E-04 4.784E-05 1.511E-05 4.746E-06

1.620 1.639 1.653 1.663 1.671 1.677

u(2)(t) 1.970E-03 6.469E-04 2.091E-04 6.683E-05 2.119E-05 6.674E-06

1.607 1.629 1.646 1.657 1.666 1.673

0.7

u(1)(t) 1.302E-02 5.359E-03 2.196E-03 8.969E-04 3.655E-04 1.488E-04

1.280 1.287 1.292 1.295 1.297 1.298

u(2)(t) 1.752E-02 7.244E-03 2.975E-03 1.217E-03 4.963E-04 2.021E-04

1.274 1.284 1.290 1.294 1.296 1.298

0.9

u(1)(t) 3.196E-02 1.491E-02 6.962E-03 3.250E-03 1.517E-03 7.080E-04

1.100 1.099 1.099 1.099 1.099 1.100

u(2)(t) 4.221E-02 1.974E-02 9.231E-03 4.313E-03 2.014E-03 9.401E-04

1.096 1.097 1.098 1.099 1.099 1.100

and u(2)(t). These results show that the approximate solutions converge with the
convergence rate α only.
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FIGURE 4. The exact and approximate solutions with N = 32, α =
0.3 for Example 1
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FIGURE 5. The approximate solutions with N = 16 for Example 1

TABLE 2. ΣM and ρM with p = 0 = q for Example 1

α/M 32 64 128 256 512 1024

0.1

u(1)(t) 6.024E-02 5.612E-02 5.234E-02 4.883E-02 4.556E-02 4.251E-02

0.102 0.100 0.100 0.100 0.100 0.100

u(2)(t) 6.041E-02 5.616E-02 5.235E-02 4.884E-02 4.556E-02 4.251E-02

0.105 0.101 0.100 0.100 0.100 0.100

0.3

u(1)(t) 6.525E-02 5.299E-02 4.304E-02 3.496E-02 2.840E-02 2.307E-02

0.300 0.300 0.300 0.300 0.300 0.300

u(2)(t) 6.530E-02 5.300E-02 4.304E-02 3.496E-02 2.840E-02 2.307E-02

0.301 0.300 0.300 0.300 0.300 0.300

0.7

u(1)(t) 1.631E-02 1.004E-02 6.180E-03 3.804E-03 2.342E-03 1.442E-03

0.700 0.700 0.700 0.700 0.700 0.700

u(2)(t) 1.631E-02 1.004E-02 6.180E-03 3.804E-03 2.342E-03 1.442E-03

0.700 0.700 0.700 0.700 0.700 0.700

0.9

u(1)(t) 6.477E-03 3.521E-03 1.895E-03 1.011E-03 5.357E-04 2.819E-04

0.879 0.893 0.906 0.917 0.926 0.934

u(2)(t) 7.833E-03 4.256E-03 2.297E-03 1.230E-03 6.537E-04 3.451E-04

0.880 0.890 0.901 0.912 0.922 0.930

Example 2. Consider the following test problem:
Dα

t u(1)(t)+(1− t)u(3)(t)+
∫ t

0{stu(1)(s)+u(2)(t)}dt = f (1)(t),

Dα
t u(2)(t)+ tu(1)(t)+

∫ t
0{u(2)(s)+u(3)(t)}dt = f (2)(t),

Dα
t u(3)(t)+ t2u(2)(t)+

∫ t
0{ts2u(1)(s)+u(3)(t)}dt = f (3)(t),

for t ∈ (0,1], IC : u(1)(0) = u(2)(0) = u(3)(0) = 0.

The exact solution is u(1)(t) = t(t − 1), u(2)(t) = et , u(3)(t) = t3 for the suitable
choice of f (i)(t). The exact and approximate solutions for Example 2 are shown in
Figure 7 and Figure 8 for α = 0.3 and α = 0.7, respectively. Figure 9 display the
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FIGURE 6. Log–log plots of ΣM with α = 0.4 for Example 1

log-log plots of the computational errors for Example 2. Figure 10 illustrates surface
plots of the computational error. Table 3 shows ΣN and ρN for u(1)(t), u(2)(t) and
u(3)(t). The tabular data shows that the approximate solutions converge with (2−α)
rate of accuracy.
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FIGURE 7. Computed solutions with N = 32, α = 0.3 for Example
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FIGURE 8. Computed solutions with N = 32, α = 0.7 for Example
2
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TABLE 3. ΣM and ρM for Example 2

α/M 32 64 128 256 512 1024

0.1

u(1)(t) 6.300E-05 1.909E-05 5.689E-06 1.672E-06 4.854E-07 1.396E-07

1.722 1.747 1.767 1.784 1.798 1.810

u(2)(t) 2.021E-04 5.228E-05 1.353E-05 3.507E-06 9.096E-07 2.362E-07

1.951 1.950 1.948 1.947 1.945 1.943

u(3)(t) 1.502E-04 4.822E-05 1.495E-05 4.512E-06 1.335E-06 3.894E-07

1.640 1.689 1.728 1.757 1.778 1.795

0.5

u(1)(t) 1.440E-03 5.201E-04 1.867E-04 6.671E-05 2.376E-05 8.447E-06

1.469 1.478 1.485 1.489 1.492 1.495

u(2)(t) 6.896E-04 2.564E-04 9.368E-05 3.385E-05 1.215E-05 4.340E-06

1.427 1.453 1.468 1.478 1.485 1.490

u(3)(t) 3.812E-03 1.394E-03 5.041E-04 1.810E-04 6.470E-05 2.305E-05

1.451 1.467 1.478 1.484 1.489 1.492

0.9

u(1)(t) 1.385E-02 6.511E-03 3.049E-03 1.425E-03 6.654E-04 3.106E-04

1.089 1.095 1.097 1.099 1.099 1.100

u(2)(t) 6.710E-03 3.203E-03 1.511E-03 7.090E-04 3.317E-04 1.550E-04

1.067 1.084 1.092 1.096 1.098 1.099

u(3)(t) 2.517E-02 1.182E-02 5.533E-03 2.587E-03 1.208E-03 5.640E-04

1.091 1.095 1.097 1.098 1.099 1.099
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FIGURE 9. Log–log plots for Example 2

6. CONCLUSION

In this work, a novel finite difference scheme is developed for solving a system of
fractional order Volterra-type integro-differential equations. The L1 technique is em-
ployed to discretize the Caputo fractional derivative, in which the integral component
is approximated with the help of the composite trapezoidal rule. The convergence
analysis and the error estimation are provided. The theoretical and experimental res-
ults confirm the efficiency and the applicability of the proposed scheme.
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FIGURE 10. Surface plots of pointwise error for Example 2
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