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Abstract. Let FG be the group algebra of a finite p-group G over a finite field F of character-
istic p. Let ⊛ be an involution of FG and V⊛(FG) the ⊛-unitary subgroup of FG. The order
of V⊛(FG) is known when p is an odd prime, and ⊛ arises from G, however the case of two
characteristic is a challenging problem. The RAMEGA package of GAP system contains im-
plementations of functions based on random methods related to group algebras. In this paper
we provide the theoretical background of some random functions of RAMEGA that related to
the ∗-unitary subgroup of FG, where ∗ is the canonical involution. We estimate the order of
the ∗-unitary subgroup of FG for non-abelian 2-groups of order 25 using Monte Carlo method.
Furthermore, we verify the estimated orders for certain groups of order 25.
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1. INTRODUCTION

Let FG be the group algebra of a finite p-group G over a finite field F of charac-
teristic p. We denote by V (FG) the normalized unit group of FG, that is,

V (FG) =
{

x = ∑
g∈G

αgg ∈ FG | χ(x) = ∑
g∈G

αg = 1
}
, (1.1)

where χ(x) is the augmentation map of FG (see [13, Chapters 2-3, p. 194-196]). As a
consequence, the order of V (FG) is equal to |F ||G|−1 and it is easy to see that V (FG)
may be very large even for small group basis G. Therefore, studying the structure of
the normalized group of units is a really difficult task. While random methods may
serve as effective tools for various purposes, group algebras have yet to be explored
using such techniques. Using the formula (1.1) it is easy to obtain a sequence of uni-
formly distributed random normalized units. In this paper, we propose some random
functions and take advantage of them to study the structure of normalized units. The
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implementations of the functions can be found in our RAMEGA package [3] of the
GAP computer algebra system.

While numerous authors have delved into the investigation of the structure of
V (FG), our understanding of its structure and that of its subgroups remains limited.
For an overview of this topic, we refer the reader to [10] and [13].

Assume ⊛ acts as an anti-automorphism on G. This anti-automorphism can be
linearly extended to FG, providing an algebra involution of FG which we shall also
denote as ⊛. In this context, we say that the algebra involution ⊛ arises from the
group basis G. An example of such an involution arising from G is the canonical
∗-involution, representing the linear extension of the anti-automorphism on G that
maps each element of G to its inverse. An element u ∈V (FG) is called ⊛-unitary if
u⊛ = u−1, with respect to an involution ⊛ of FG. The set comprising all unitary
elements of V (FG) forms a subgroup denoted as V⊛(FG) and is referred to as the
⊛-unitary subgroup. Interest in the unitary subgroups first appeared in algebraic
topology and unitary K-theory, as evidenced by Novikov’s paper [19], playing a
pivotal role in the examination of the structure of V (FG). For more details we refer
the reader to [13]. This subgroup has proven immensely valuable in various studies,
as highlighted in [1, 4, 5, 7, 8, 12, 14, 16, 17]. Consider a finite Galois extension L
of F with Galois group G, where F is a finite field of characteristic two. Serre, in
[20], unveiled an intriguing connection between the self-dual normal basis of L over
F and the unitary subgroup of FG. This correlation emphasizes the timeliness and
relevance of investigating unitary subgroups.

Although the order the ⊛-unitary subgroup of FG, where p is an odd prime and
⊛ arises from G is well known [6], the case with characteristic two is a challenging
problem. Let G{2} be the set of all elements of G having order 2 with the identity.
In [11], Bovdi and Sakach gave a formula for the order of the unitary subgroup when
G is a finite abelian 2-group, proving that

Proposition 1 (Theorem 2, [11]). Let G be a finite abelian 2-group and F a finite
field of characteristic two. Then

|V∗(FG)|= |G2{2}| · |F |
1
2 (|G|+|G{2}|)−1.

Computing the order of V∗(FG) remained an open question, when G is a non-
abelian 2-group and has been addressed by many authors ever since ([2,9,15,21,22]).
In this case it turned out that the order of the ∗-unitary subgroup of FG determines
the order of G. Let ξ(G) denote the center of the group G and ξ(G){2} denote the set
of elements of order two in ξ(G).

Proposition 2 ([6]). Let G be a finite 2-group. If F is a finite field of characteristic
two, then

|V∗(FG)|= Θ · |F |
1
2 (|G|+|G{2}|)−1

for some integer Θ. Moreover, if the set Tc = {g ∈ G | g2 = c} is commutative for
some c ∈ ξ(G){2}, then Θ does not depend on the field F.
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The parameter Θ has been determined for many groups ([2, 15, 21, 22]), but no
general formula has been found for that, except the case when G is an abelian 2-
group.

In the next section we present some random methods corresponding to the order
of the ∗-unitary subgroup showing their probability theoretical background. These
methods together with several others can be found in the RAMEGA package [3] of
GAP. With the help of random methods the order of V∗(FG) can be estimated within
a reasonable time even for larger group algebras. Using Monte Carlo method we
show that Θ can be estimated for all the groups G of order 25. We also verify the
estimated orders for certain groups of order 25.

2. MONTE CARLO METHOD

Let FG be a group algebra of a finite p-group G over a finite field F of character-
istic p. Every element of FG can be written as

x = ∑
g∈G

αg,

where α ∈ F . Therefore it is easy to generate a random element from FG with a
uniform distribution.

RAMEGA [3] stands for RAndom MEthods in Group Algebras and includes sev-
eral random methods for studying group algebras. There are also some functions
available for the ⊛-unitary subgroup, such as GetRandomNormalizedUnitaryUnit,
RandomUnitarySubgroup or RandomUnitaryOrder. The function RandomUnitary-
Order estimates the order of the ⊛-unitary subgroup of FG using Monte Carlo method.
For odd primes the function returns the exact value of the order (see Theorem 1 in
[6]), however general formula for the order is not known when the group basis G is a
non-abelian 2-group. Therefore we deal with only the case when |F |= 2m for some
m and G is a group of order 2n for some n.

Let us randomly select a unit ξ from the normalized unit group V (FG). The RA-
MEGA function GetRandomUnit can generate a random normalized unit with uni-
form distribution. Consider the experiment as success if the selected unit is unitary,
that is ξξ∗ = 1, otherwise it is failure. To be more precise let ξ be a random variables
defined by the following way:

ξ =

{
1 if ξ is a unitary unit;
0 if ξ is not a unitary unit.

It is well-known that the distribution of ξ is Bernoulli with parameter q, were
q= |V∗(FG)|

|V (FG)| . Let us denote by η the distribution of the number k of the Bernoulli trials
needed to get one success. The probability P(η = k) is equal to (1−q)k−1q therefore
η has geometric distribution and its mean µ = E(η) = 1

q and its standard deviation is

σ =
√

1−q
q . Thus |V∗(FG)| can be estimated as |V∗(FG)|= q · |V (FG)|= |V (FG)|

E(η) .
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Since |G| ≤ |V∗(FG)| ≤ |V (FG)| = |F ||G|−1 = 2m|G|−m we conclude that q = 1
2i0

,
where 0≤ i0 ≤m|G|−m−n. The central limit theorem asserts that as the number of
replications n increases, the standardized estimator µ̂−µ

σ√
n

converges in distribution to

the standard normal, where µ̂ = η1+η2+···+ηn
n , µ = 1

q and σ =
√

µ(µ−1). Therefore

lim
n→∞

P
(
|µ̂−µ| ≤ xσ√

n

)
= Φ(x).

The algorithm works as a statistical test with null hypothesis that the mean E( µ̂−µ
σ√
n
)

is zero. The test is at the Z percent confidence level if

P(|µ̂−µ| ≤ zp
σ√
n
) =

Z
100

,

where zp = Φ−1( Z
100) and the corresponding confidence interval is (−zp

σ√
n ,zp

σ√
n).

Consider n trials such that the ith random sample ηi is xi. If n is large enough, then
|V∗(FG)| can be estimated by n·|V (FG)|

x1+x2+···+xn
= n·|F ||G|−1

x1+x2+···+xn
. Since |V∗(FG)| is a p-group

n·|F ||G|−1

x1+x2+···+xn
has to be round to the closest power of p.

The pseudocode of our algorithm can be seen in Algorithm 1.

Algorithm 1 Order of unitary subgroup by random way using geometric distribution
function RANDOMUNITARYORDER(kg,n) ▷ kg is the group algebra, n is the number of trials

mean← 0
trials← [] ▷ empty list
counter← 0
grouporder← order of G
f ieldsize← size of F
p← characteristic of F
repeat

m← 0
repeat

x← random normalized unit
m← m+1

until x is unitary
trials← m;

until counter = n
mean = Sum(trials)/Number(trials);
min← n(mean− p)2/p
position← 0
if 1 < mean then

for i = 1 to LogInt( f ieldsize, p) · (grouporder−1) do
index← (n∗ (mean− pi)2)/(pi ∗ (pi−1))
if index < min then

min← index
position← i

end if
end for

end if
return f ieldsize(grouporder−1)/pposition

end function

Using package RAMEGA we can estimate the order of the ∗-unitary subgroups
for the groups of order 25 within a reasonable time. For the sake of convenience Gi
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represents the group that is returned by the GAP funtion SmallGroup(25,i) using the
library of small groups of GAP [18].

Conjecture 1. Let G be a non-abelian group of order 25 and F is a finite field of
characteristic two. Then |V∗(FG)|= Θ · |F | 12 (|G|+|G{2}|)−1, where

(i) Θ = 1 if G ∈ {G18,G27,G28,G34,G39,G42,G43,G46,G48,G49,G50};
(ii) Θ = 2 if

G ∈ {G5,G6,G7,G9,G11,G17,G19,G22,

G25,G30,G31,G37,G38,G40,G44};
(iii) Θ = 4 if

G ∈ {G2,G4,G8,G10,G12,G13,G14,G15,

G20,G23,G24,G29,G33,G41,G47};
(iii) Θ = 8 if G ∈ {G26,G32,G35}.

Proposition 3 (Lemma 2.6, [22]). Let G be a finite group and A an elementary
abelian 2-group. If |V∗(FG)|= Θ · |F | 12 (|G|+|G{2}|)−1, then

|V∗(F(G×A))|= Θ · |F |
1
2 (|G×A|+|(G×A){2}|)−1.

Let H be a normal subgroup of G. Let us define SH to be the set

{xx∗ |Ψ(x) ∈V∗(FG)},
where G = G/H and Ψ is the natural homomorphism from FG to FG. We will use
Ĥ to denote the sum of the elements of H in FG.

Theorem 1. Conjecture 1 is true for the following groups G2,G5,G17,G18,G20,G22,
G23,G37,G39,G40,G41,G46,G47,G48.

Proof. According to Proposition 3 and Theorem 1.4 in [2]
(i) Θ= 1 if G∈{G48∼=D8YC4×C2,G39∼=D16×C2,G46∼=D8×C2×C2};

(ii) Θ = 2 if G ∈ {G37 ∼= M16×C2,G40 ∼= D−16×C2,G22 ∼= H16×C2};
(iii) Θ= 4 if G∈ {G41∼=Q16×C2,G23∼=C4⋉C4×C2,G47∼=Q8×C2×C2}.
Let G = G2. Then G′ ∼= C2, G = G/G′ ∼= C4×C4 and SG′ = ⟨ 1+α(g+g−1)Ĝ′ |

α ∈ F, g ∈ G\G{2} ⟩. According to Lemma 1 in [6]

|V∗(FG)|= |F ||G| · |V∗(FG)|
|SG′ |

= |F | 12 |G| · |V∗(FG)|
|F |

1
4 (|G|−|G{2}|)

= |F | 14 (|G|+|G{2}|) · |V∗(FG)|.

By Theorem 2 in [11] and the fact that |G{2}|= 2|G{2}| we have

|V∗(FG)|= |G2{2}| · |F |
1
2 (|G|+|G{2}|)−1 = 4 · |F |

1
2 (|G|+|G{2}|)−1 = 4 · |F |

1
4 (|G|+|G{2}|)−1.

Therefore

|V∗(FG)|= |F | 14 (|G|+|G{2}|) · |V∗(FG)|= 4 · |F | 12 (|G|+|G{2}|)−1,
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which proves that Θ = 4.
Let G = G5. Then G′ ∼= C2, G = G/G′ ∼= C8×C2 and SG′ = ⟨ 1+α(g+g−1)Ĝ′ |

α ∈ F, g ∈ G\G{2} ⟩. According to Lemma 1 in [6]

|V∗(FG)|= |F | 14 (|G|+|G{2}|) · |V∗(FG)|.

By Theorem 2 in [11] and the fact that |G{2}|= 2|G{2}| we have

|V∗(FG)|= |G2{2}| · |F |
1
2 (|G|+|G{2}|)−1 = 2 · |F |

1
2 (|G|+|G{2}|)−1 = 2 · |F |

1
4 |G|+

|G{2}|
4 −1.

Therefore

|V∗(FG)|= |F | 14 (|G|+|G{2}|) · |V∗(FG)|= 2 · |F | 12 |G|+
|G{2}|

4 + |G{2}|4 −1,

which proves that Θ = 2.
Let G = G17. According to Theorem 1.1 in [5] |V∗(FG)| = 2 · |F | 12 |G|+1. Since

|G{2}|= 4 we have |V∗(FG)|= 2 · |F | 12 (|G|+|G{2}|)−1 so Θ = 2.
Let G = G18 ∼= D32. Then |G{2}|= |G|

2 +2 and by Corollary 2 in [15]

|V∗(FG)|= |F |3
|G|
4 = |F |

|G|
4 + |G|2 .

Therefore
|V∗(FG)|= |F |

|G|
4 −

|G{2}|
2 +1 · |F |

1
2 (|G|+|G{2}|)−1.

By Proposition 2 Θ = |F |
|G|
4 −

|G{2}|
2 +1 = |F |

|G|
4 −

|G|
4 −1+1 = 1.

Let G = G20 ∼= Q32. By Corollary 2 in [15] and the fact that |G{2}|= 2

|V∗(FG)|= 4 · |F |
|G|
2 = 4 · |F |

1
2 (|G|+|G{2}|)−1.

Thereofore Θ = 4 by Proposition 2.
□
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