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Abstract. This paper investigates the solvability and dynamic properties of the following multi-
dimensional close-to-cyclic system of nonlinear difference equations

y(i)n+1 =
aiy

(i+1)
n

(
y(i+1)

n−k

)pi+1
+bi(

y(i)n−k+1

)pi
; n ∈ N0 ,

where y(i+k)
n = y(i)n , pi+k = pi,ai+k = ai,bi+k = bi; i = 1,k, the initial values y(i)−k, y(i)−k+1, . . . ,y(i)0

and ai and bi, i = 1,k, are positive real numbers and pi, i = 1,k, are real numbers. The system,
characterized by intricate nonlinear interactions, is analyzed to derive explicit solutions and ex-
amine its asymptotic behavior. By leveraging a transformation approach, the multidimensional
system is reduced to a simpler form, allowing for a comprehensive analysis of its solutions. The
study demonstrates that under specific conditions, the system’s equilibrium points are globally
attractive, ensuring stability. The theoretical findings are supported by numerical examples that
highlight the behavior of solutions under various parameter configurations, illustrating the prac-
tical applicability of the results.
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1. INTRODUCTION

Nonlinear difference equations play a fundamental role in modeling various dy-
namic systems across numerous scientific disciplines. Their solutions offer valuable
insights into the behavior and stability of such systems, enabling us to make accurate
predictions and devise effective control strategies. In this paper, we delve into the
study a close-to-cyclic system of nonlinear difference equations, aiming to represent
its solutions and investigate their asymptotic behavior in special cases.
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The close-to-cyclic system under consideration exhibits a rich interplay of nonlin-
ear dynamics, where the variables in the system mutually influence each other. This
intricate coupling gives rise to intricate behaviors that often defy straightforward ana-
lysis. However, by leveraging advanced mathematical techniques and rigorous reas-
oning, we aim to unravel the underlying dynamics and shed light on the behavior of
the system’s solutions.

There has been a great interest in finding solutions to system of nonlinear differ-
ence equations. Still, most of the papers published in this aspect were limited to
system of two or three dimensions at most, see for example [1–24].

Overall, our aim in this paper is to provide a comprehensive understanding of the
solutions and asymptotic behavior of the following close-to-cyclic system of nonlin-
ear difference equations

y(i)n+1 =
aiy

(i+1)
n

(
y(i+1)

n−k

)pi+1
+bi(

y(i)n−k+1

)pi ; n ∈ N0 , (1.1)

where y(i+k)
n = y(i)n , pi+k = pi,ai+k = ai,bi+k = bi; i= 1,k, the initial values y(i)−k, y(i)−k+1,

. . . ,y(i)0 and the parameters ai and bi, i = 1,k are positive real numbers and pi, i = 1,k,
are real numbers.

2. AUXILIARY RESULTS

In this section we will present several results needed to prove the main results in
Section 3.

Consider the following k-dimensional linear difference equations system

w(i)
n+1 = aiw

(i+1)
n +bi, (2.1)

where w(i+k)
n = w(i)

n and w(i)
0 ,ai,bi, i = 1,k are positive real numbers.

The following auxiliary result is used several times in the rest of the paper.

Lemma 1. Let (w(i)
n )n≥0 be the solution to system (2.1). Then for all n ∈ N0

w(i)
kn+ j =

w(i)
j +nTi, S = 1,

Snw(i)
j +Ti

(
Sn −1
S−1

)
, S ̸= 1,

where, i = 1,k, j = 0,k−1 and

S =
k

∏
l=1

al, Ti =
k

∑
r=2

(
i+r−2

∏
l=i

al

)
bi+r−1 +bi. (2.2)

Proof. The systems in (2.1) immediately imply, for i= 1,k, the following relations

w(i)
n+k = aiw

(i+1)
n+k−1 +bi
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= ai

[
ai+1w(i+2)

n+k−2 +bi+1

]
+bi

= aiai+1w(i+2)
n+k−2 +aibi+1 +bi

= aiai+1

[
ai+2w(i+3)

n+k−3 +bi+2

]
+aibi+1 +bi

= aiai+1ai+2w(i+3)
n+k−3 +aiai+1bi+2 +aibi+1 +bi

= aiai+1ai+2ai+3w(i+4)
n+k−4 +aiai+1ai+2bi+3 +aiai+1bi+2 +aibi+1 +bi

...

= aiai+1 . . .ai+k−1w(i+k)
n+k−k +aiai+1 . . .ai+k−2bi+k−1

+aiai+1 . . .ai+k−3bi+k−2 + · · ·+aibi+1 +bi

= aiai+1 . . .ai+k−1w(i)
n +aiai+1 . . .ai+k−2bi+k−1

+aiai+1 . . .ai+k−3bi+k−2 + · · ·+aibi+1 +bi.

So, we have

w(i)
n+k =

(
k

∏
l=1

al

)
w(i)

n +

[
k

∑
r=2

(
i+r−2

∏
l=i

al

)
bi+r−1

]
+bi.

Putting S =
k

∏
l=1

al and Ti =
k

∑
r=2

(
i+r−2

∏
l=i

al

)
bi+r−1 +bi. We get

w(i)
n+k = Sw(i)

n +Ti,

for i = 1,k, with the initial values w(i)
j , j = 0,k−1.

Consequently, instead of solving system (2.1), we will solve the following equa-
tions

w(i)
n+k = Sw(i)

n +Ti, n ∈ N0, (2.3)

where w(i)
j , j = 0,k−1, are positive real numbers.

Equation (2.3) yield

w(i)
k = Sw(i)

0 +Ti,

w(i)
k+1 = Sw(i)

1 +Ti,

...

w(i)
2k−1 = Sw(i)

k−1 +Ti.

w(i)
2k = Sw(i)

k +Ti = S
(

Sw(i)
0 +Ti

)
+Ti = S2w(i)

0 +STi +Ti,
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w(i)
2k+1 = Sw(i)

k+1 +Ti = S
(

Sw(i)
1 +Ti

)
+Ti = S2w(i)

1 +STi +Ti,

...

w(i)
3k−1 = Sw(i)

2k−1 +Ti = S
(

Sw(i)
k−1 +Ti

)
+Ti = S2w(i)

k−1 +STi +Ti,

w(i)
3k = Sw(i)

2k +Ti = S
(

S2w(i)
0 +STi +Ti

)
+Ti = S3w(i)

0 +S2Ti

+STi +Ti,

w(i)
3k+1 = Sw(i)

2k+1 +Ti = S
(

S2w(i)
1 +STi +Ti

)
+Ti = S3w(i)

1 +S2Ti

+STi +Ti,

...

w(i)
4k−1 = Sw(i)

3k−1 +Ti = S
(

S2w(i)
k−1 +STi +Ti

)
+Ti = S3w(i)

k−1 +S2Ti

+STi +Ti.

The inductive argument proves, for i = 1,k, that

w(i)
kn = Snw(i)

0 +
n−1

∑
t=0

StTi,

w(i)
kn+1 = Snw(i)

1 +
n−1

∑
t=0

StTi,

w(i)
kn+2 = Snw(i)

2 +
n−1

∑
t=0

StTi,

...

w(i)
kn+k−1 = Snw(i)

k−1 +
n−1

∑
t=0

StTi.

More precisely, for i = 1,k and j = 0,1, . . . ,k−1, we obtain

w(i)
kn+ j = Snw(i)

j +
n−1

∑
t=0

StTi.

Thus, for all n∈ N0 we obtain

w(i)
kn+ j =

w(i)
j +nTi, S = 1,

Snw(i)
j +Ti

(
Sn −1
S−1

)
, S ̸= 1.

(2.4)

Now, we will prove by induction that the relation (2.4) is true.



ON A MULTIDIMENSIONAL CLOSE-TO-CYCLIC 279

A simple verification shows that (2.4) holds for n = 0. Suppose that (2.4) holds for

n, that is w(i)
kn+ j =

w(i)
j +nTi, S = 1,

Snw(i)
j +Ti

(
Sn −1
S−1

)
, S ̸= 1.

We will prove that (2.4) holds for n+1. We have
• If S ̸= 1

w(i)
k(n+1)+ j = Sw(i)

kn+ j +Ti = S
[

Snw(i)
j +Ti

(
Sn −1
S−1

)]
+Ti

= Sn+1w(i)
j +Ti

[
S
(

Sn −1
S−1

)]
+Ti = Sn+1w(i)

j +Ti

[
Sn+1 −S+S−1

S−1

]
.

So

w(i)
k(n+1)+ j = Sn+1w(i)

j +Ti

(
Sn+1 −1

S−1

)
.

• If S = 1

w(i)
k(n+1)+ j = w(i)

kn+ j +Ti = w(i)
j +nTi +Ti

w(i)
k(n+1)+ j = w(i)

j +(n+1)Ti.

Thus, w(i)
k(n+1)+ j =

w(i)
j +(n+1)Ti, S = 1,

Snw(i)
j +Ti

(
Sn+1 −1

S−1

)
, S ̸= 1.

□

3. MAIN RESULTS

In this section we study the solvability of system (1.1) by considering changes of
variables that transforms this system to the system of k linear difference equations
(2.1).

3.1. Form of solution

Here we show that system of difference equations (1.1) is practically solvable, and
following the analysis of each of the systems. By using the changes of variables

w(i)
n = y(i)n

(
y(i)n−k

)pi
, i = 1,k, n ∈ N0, (3.1)

system (1.1) is transformed to the following one

w(i)
n+1 = aiw

(i+1)
n +bi,

which is the same system studied in the previous section.
Relation (3.1), for i = 1,k, yield

y(i)n = w(i)
n

(
y(i)n−k

)−pi
, n ∈ N0.
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So, for i = 1,k, we have

y(i)kn = w(i)
kn

(
y(i)kn−k

)−pi
= w(i)

kn

[
w(i)

kn−k

(
y(i)kn−2k

)−pi
]−pi

= w(i)
kn

(
w(i)

kn−k

)−pi
(

y(i)kn−2k

)(−pi)
2

= w(i)
kn

(
w(i)

kn−k

)−pi
[

w(i)
kn−2k

(
y(i)kn−3k

)−pi
](−pi)

2

.

Hence

y(i)kn = w(i)
kn

(
w(i)

kn−k

)−pi
(

w(i)
kn−2k

)(−pi)
2 (

y(i)kn−3k

)(−pi)
3

= w(i)
kn

(
w(i)

kn−k

)−pi
(

w(i)
kn−2k

)(−pi)
2 [

w(i)
kn−3k

(
y(i)kn−4k

)−pi
](−pi)

3

= w(i)
kn

(
w(i)

kn−k

)−pi
(

w(i)
kn−2k

)(−pi)
2 (

w(i)
kn−3k

)(−pi)
3 (

y(i)kn−4k

)(−pi)
4

= w(i)
kn

(
w(i)

kn−k.1

)(−pi)
1 (

w(i)
kn−k.2

)(−pi)
2

. . .
(

w(i)
kn−k(t−1)

)(−pi)
t−1 (

y(i)kn−kt

)(−pi)
t

= w(i)
kn

(
w(i)

kn−k

)−pi
(

w(i)
kn−2k

)(−pi)
2 (

w(i)
kn−3k

)(−pi)
3

. . .
(

w(i)
kn−kt

)(−pi)
t

. . .

×
(

w(i)
k

)(−pi)
n−1 (

y(i)0

)(−pi)
n

.

Hence, we obtain

y(i)kn =

[
n−1

∏
t=0

(
w(i)

k(n−t)

)(−pi)
t
](

y(i)0

)(−pi)
n

, n ∈ N0. (3.2)

By the same argument

y(i)kn+1 = w(i)
kn+1

(
y(i)kn+1−k

)−pi
= w(i)

kn+1

[
w(i)

kn+1−k

(
y(i)kn+1−2k

)−pi
]−pi

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(

y(i)kn+1−2k

)(−pi)
2

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
[

w(i)
kn+1−2k

(
y(i)kn+1−3k

)−pi
](−pi)

2

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(

w(i)
kn+1−2k

)(−pi)
2 (

y(i)kn+1−3k

)(−pi)
3

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(

w(i)
kn+1−2k

)(−pi)
2 [

w(i)
kn+1−3k

(
y(i)kn+1−4k

)−pi
](−pi)

3

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(

w(i)
kn+1−2k

)(−pi)
2 (

w(i)
kn+1−3k

)(−pi)
3 (

y(i)kn+1−4k

)(−pi)
4

.
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Hence

y(i)kn+1 = w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(

w(i)
kn+1−2k

)(−pi)
2 (

w(i)
kn+1−3k

)(−pi)
3

. . .

×
(

w(i)
kn+1−(t−1)k

)(−pi)
t−1 (

y(i)kn+1−tk

)(−pi)
t

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(

w(i)
kn+1−2k

)(−pi)
2 (

w(i)
kn+1−3k

)(−pi)
3

. . .

×
(

w(i)
kn+1−tk

)(−pi)
t

. . .
(

w(i)
k+1

)(−pi)
n−1 (

y(i)1

)(−pi)
n

= w(i)
k(n−0)+1

(
w(i)

k(n−1)+1

)−pi
(

w(i)
k(n−2)+1

)(−pi)
2 (

w(i)
k(n−3)+1

)(−pi)
3

×
(

w(i)
k(n−t)+1

)(−pi)
t

. . .
(

w(i)
k(n−(n−1))+1

)(−pi)
n−1 (

y(i)1

)(−pi)
n

.

So, we get

y(i)kn+1 =

[
n−1

∏
t=0

(
w(i)

k(n−t)+1

)(−pi)
t
](

y(i)1

)(−pi)
n

, n ∈ N0. (3.3)

Likewise

y(i)kn+2 = w(i)
kn+2

(
y(i)kn+2−k

)−pi
= w(i)

kn+2

[
w(i)

kn+2−k

(
y(i)kn+2−2k

)−pi
]−pi

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
(

y(i)kn+2−2k

)(−pi)
2

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
[

w(i)
kn+2−2k

(
y(i)kn+2−3k

)−pi
](−pi)

2

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
(

w(i)
kn+2−2k

)(−pi)
2 [

w(i)
kn+2−3k

(
y(i)kn+2−4k

)−pi
](−pi)

3

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
(

w(i)
kn+2−2k

)(−pi)
2 (

w(i)
kn+2−3k

)(−pi)
3 (

y(i)kn+2−4k

)(−pi)
4

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
(

w(i)
kn+2−2k

)(−pi)
2 (

w(i)
kn+2−3k

)(−pi)
3

. . .

×
(

w(i)
kn+2−(t−1)k

)(−pi)
t−1 (

y(i)kn+2−tk

)(−pi)
t

.

Hence

y(i)kn+2 = w(i)
kn+2

(
w(i)

kn+2−k

)−pi
(

w(i)
kn+2−2k

)(−pi)
2 (

w(i)
kn+2−3k

)(−pi)
3

× . . .
(

w(i)
kn+2−tk

)(−pi)
t

. . .
(

w(i)
k+2

)(−pi)
n−1 (

y(i)2

)(−pi)
n
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= w(i)
k(n−0)+2

(
w(i)

k(n−1)+2

)−pi
(

w(i)
k(n−2)+2

)(−pi)
2 (

w(i)
k(n−3)+2

)(−pi)
3

. . .

×
(

w(i)
k(n−t)+2

)(−pi)
t

. . .
(

w(i)
k(n−(n−1))+2

)(−pi)
n−1 (

y(i)2

)(−pi)
n

.

So, we get

y(i)kn+2 =

[
n−1

∏
t=0

(
w(i)

k(n−t)+2

)(−pi)
t
](

y(i)2

)(−pi)
n

, n ∈ N0. (3.4)

By the same argument

y(i)kn+k−1 = w(i)
kn+k−1

(
y(i)kn+k−1−k

)−pi
= w(i)

kn+k−1

[
w(i)

kn+k−1−k

(
y(i)kn+k−1−2k

)−pi
]−pi

= w(i)
kn+k−1

(
w(i)

kn+k−1−k

)−pi
(

y(i)kn+k−1−2k

)(−pi)
2

= w(i)
kn+k−1

(
w(i)

kn+k−1−k

)−pi
[

w(i)
kn+k−1−2k

(
y(i)kn+k−1−3k

)−pi
](−pi)

2

= w(i)
kn+k−1

(
w(i)

kn+k−1−k

)−pi
(

w(i)
kn+k−1−2k

)(−pi)
2

×
[

w(i)
kn+k−1−3k

(
y(i)kn+k−1−4k

)−pi
](−pi)

3

= w(i)
kn+k−1

(
w(i)

kn+k−1−k

)−pi
(

w(i)
kn+k−1−2k

)(−pi)
2 (

w(i)
kn+k−1−3k

)(−pi)
3

×
(

y(i)kn+k−1−4k

)(−pi)
4

= w(i)
kn+k−1

(
w(i)

kn+k−1−k

)−pi
(

w(i)
kn+k−1−2k

)(−pi)
2 (

w(i)
kn+k−1−3k

)(−pi)
3

× . . .
(

w(i)
kn+k−1−(t−1)k

)(−pi)
t−1 (

y(i)kn+k−1−tk

)(−pi)
t

= w(i)
kn+k−1

(
w(i)

kn+k−1−k

)−pi
(

w(i)
kn+k−1−2k

)(−pi)
2 (

w(i)
kn+k−1−3k

)(−pi)
3

× . . .
(

w(i)
kn+k−1−tk

)(−pi)
t

. . .
(

w(i)
2k−1

)(−pi)
n−1 (

y(i)k−1

)(−pi)
n

= w(i)
k(n−0)+k−1

(
w(i)

k(n−1)+k−1

)−pi
(

w(i)
k(n−2)+k−1

)(−pi)
2 (

w(i)
k(n−3)+k−1

)(−pi)
3

× . . .
(

w(i)
k(n−t)+k−1

)(−pi)
t

. . .
(

w(i)
k(n−(n−1))+k−1

)(−pi)
n−1 (

y(i)k−1

)(−pi)
n

.



ON A MULTIDIMENSIONAL CLOSE-TO-CYCLIC 283

So, we get

y(i)kn+k−1 =

[
n−1

∏
t=0

(
w(i)

k(n−t)+k−1

)(−pi)
t
](

y(i)k−1

)(−pi)
n

, n ∈ N0. (3.5)

From (3.2), (3.3), (3.4) and (3.5) we can conclude that for i = 1,k and j = 0,k−1,
we obtain

y(i)kn+ j =

[
n−1

∏
t=0

(
w(i)

k(n−t)+ j

)(−pi)
t
](

y(i)j

)(−pi)
n

, n ≥ 0. (3.6)

Now, we will prove by induction that the relation (3.6) is true.
A simple verification shows that (3.6) holds for n = 0. Assume that (3.6) holds for

n, that is

y(i)kn+ j =

[
n−1

∏
t=0

(
w(i)

k(n−t)+ j

)(−pi)
t
](

y(i)j

)(−pi)
n

.

We will prove that (3.6) holds for n+1. We have

y(i)k(n+1)+ j = w(i)
k(n+1)+ j

(
y(i)k(n+1)+ j−k

)−pi

= w(i)
k(n+1)+ j

[
w(i)

k(n+1)+ j−k

(
y(i)k(n+1)+ j−2k

)−pi
]−pi

= w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
(

y(i)k(n+1)+ j−2k

)(−pi)
2

= w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
[

w(i)
k(n+1)+ j−2k

(
y(i)k(n+1)+ j−3k

)−pi
](−pi)

2

= w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
(

w(i)
k(n+1)+ j−2k

)(−pi)
2

×
[

w(i)
k(n+1)+ j−3k

(
y(i)k(n+1)+ j−4k

)−pi
](−pi)

3

= w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
(

w(i)
k(n+1)+ j−2k

)(−pi)
2 (

w(i)
k(n+1)+ j−3k

)(−pi)
3

×
(

y(i)k(n+1)+ j−4k

)(−pi)
4

.

Hence

y(i)k(n+1)+ j = w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
(

w(i)
k(n+1)+ j−2k

)(−pi)
2 (

w(i)
k(n+1)+ j−3k

)(−pi)
3

× . . .
(

w(i)
k(n+1)+ j−(t−1)k

)(−pi)
t−1 (

y(i)k(n+1)+ j−tk

)(−pi)
t

= w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
(

w(i)
k(n+1)+ j−2k

)(−pi)
2 (

w(i)
k(n+1)+ j−3k

)(−pi)
3
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× . . .
(

w(i)
k(n+1)+ j−tk

)(−pi)
t

. . .
(

w(i)
k+ j

)(−pi)
n (

y(i)j

)(−pi)
n+1

= w(i)
k(n+1−0)+ j

(
w(i)

k(n+1−1)+ j

)−pi
(

w(i)
k(n+1−2)+ j

)(−pi)
2 (

w(i)
k(n+1−3)+ j

)(−pi)
3

× . . .
(

w(i)
k(n+1−t)+ j

)(−pi)
t

. . .
(

w(i)
k(n+1−n)+ j

)(−pi)
n (

y(i)j

)(−pi)
n+1

.

So,

y(i)k(n+1)+ j =

[
n

∏
t=0

(
w(i)

k(n+1−t)+ j

)(−pi)
t
](

y(i)j

)(−pi)
n+1

.

The results below provide an explicit formula for the solution of the system (1.1).

Theorem 1. Let {y(i)n }n≥−k be a well-defined solution of (1.1). Then, for i = 1,k,
j = 0,k−1 and n ∈ N0, we have

• If S ̸= 1

y(i)kn+ j =

[
n−1

∏
t=0

(
Sn−ty(i)j

(
y(i)j−k

)pi
+Ti

(
Sn−t −1

S−1

))(−pi)
t](

y(i)j

)(−pi)
n

.

• If S = 1

y(i)kn+ j =

[
n−1

∏
t=0

(
y(i)j

(
y(i)j−k

)pi
+(n− t)Ti

)(−pi)
t
](

y(i)j

)(−pi)
n

.

3.2. Asymptotic behavior

In this section, we will study the asymptotic behavior of the equilibrium point of
the system (1.1).

The following lemma gives the equilibrium of the system (1.1).

Lemma 2.
If
(

y(1),y(1),y(1),y(2),y(2),y(2), . . . ,y(k),y(k),y(k)
)

is an equilibrium point of the sys-
tem (1.1), then it is given by([

T1

1−S

] 1
p1+1

,

[
T1

1−S

] 1
p1+1

,

[
T1

1−S

] 1
p1+1

,

[
T2

1−S

] 1
p2+1

,

[
T2

1−S

] 1
p2+1

,

[
T2

1−S

] 1
p2+1

, . . . ,

[
Tk

1−S

] 1
pk+1

,

[
Tk

1−S

] 1
pk+1

,

[
Tk

1−S

] 1
pk+1
)
,

with S =
k

∏
l=1

al < 1.
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Proof. Let
(

y(1),y(1),y(1),y(2),y(2),y(2), . . . ,y(k),y(k),y(k)
)

is an equilibrium point

of the system (1.1). So, for i = 1,k, we have(
y(i)
)pi+1

= ai

(
y(i+1)

)pi+1+1
+bi = ai

[
ai+1

(
y(i+2)

)pi+2+1
+bi+1

]
+bi

= aiai+1

(
y(i+2)

)pi+2+1
+aibi+1 +bi

= aiai+1

[
ai+2

(
y(i+3)

)pi+3+1
+bi+2

]
+aibi+1 +bi

= aiai+1ai+2

(
y(i+3)

)pi+3+1
+aiai+1bi+2 +aibi+1 +bi

= aiai+1ai+2ai+3

(
y(i+4)

)pi+4+1
+aiai+1ai+2bi+3

+aiai+1bi+2 +aibi+1 +bi

= aiai+1ai+2ai+3ai+4

(
y(i+5)

)pi+5+1
+aiai+1ai+2ai+3bi+4

+aiai+1ai+2bi+3 +aiai+1bi+2 +aibi+1 +bi

...

= aiai+1 . . .ai+k−1

(
y(i+k)

)pi+k+1
+aiai+1 . . .ai+k−2bi+k−1

+aiai+1 . . .ai+k−3bi+k−2 + · · ·+aibi+1 +bi

=

(
k

∏
l=1

al

)(
y(i+k)

)pi+k+1
+

[
k

∑
r=2

(
i+r−2

∏
l=i

al

)
bi+r−1

]
+bi

=

(
k

∏
l=1

al

)(
y(i)
)pi+1

+

[
k

∑
r=2

(
i+r−2

∏
l=i

al

)
bi+r−1

]
+bi.

So (
y(i)
)pi+1

(
1−

k

∏
l=1

al

)
=

[
k

∑
r=2

(
i+r−2

∏
l=i

al

)
bi+r−1

]
+bi,

consequently

y(i) =


[

k

∑
r=2

(
i+r−2

∏
l=i

al

)
bi+r−1

]
+bi

1−
k

∏
l=1

al



1
pi +1

.
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Using notation (2.2), we get

y(i) =
[

Ti

1−S

] 1
pi+1

, i = 1,k.

Note that the condition S < 1 implies that y(i) is positive whatever the values of pi,
i = 1,k. □

Theorem 2. Consider system (1.1). Assume, for i = 1,k, that S < 1 and |pi|< 1.
Then the equilibrium point of the system (1.1) is globally attractive.

Proof. Suppose, for i = 1,k, that S < 1 and |pi|< 1, so we obtain

lim
n→+∞

y(i)kn+ j = lim
n→+∞

[(
n−1

∏
t=0

(
Sn−ty(i)j

(
y(i)j−k

)pi
+Ti

(
Sn−t −1

S−1

))(−pi)
t)(

y(i)j

)(−pi)
n
]

= ∏
t≥0

[
Ti

(
−1

S−1

)](−pi)
t

= ∏
t≥0

[
Ti

1−S

](−pi)
t

=

[
Ti

1−S

]
∑t≥0(−pi)

t

.

Moreover, we have

∑
t≥0

(−pi)
t = lim

s→+∞

s

∑
t=0

(−pi)
t = lim

s→+∞

(−pi)
s+1 −1

−pi −1
=

−1
−pi −1

=
1

pi +1
.

So

lim
n→+∞

y(i)kn+ j =

[
Ti

1−S

] 1
pi+1

= y(i).

From where the equilibrium is globally attractive.
□

4. NUMERICAL EXAMPLES

Here, we present specific examples to illustrate the behavior of solutions for the
multidimensional close-to-cyclic system of nonlinear difference equations under vary-
ing initial conditions and parameter values. Through these examples, the theoret-
ical findings are validated, and the dynamics of the system, including stability and
equilibrium points, are visually demonstrated. The examples are complemented by
graphical representations, offering deeper insights into the system’s characteristics
and confirming the global attractiveness of equilibrium points under specified condi-
tions.

Example 1. Let k = 2, a1 = 2,a2 =
1
2
,b1 = 2,b2 = 3, p1 =

1
2

and p2 =
1
3
, and the

initial values y(1)−2 = 4, y(1)−1 = 4, y(1)0 = 3, y(2)−2 = 8, y(2)−1 = 8, y(2)0 = 6 in system (1.1),
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then we obtain that S = 1, and since, for i = 1,2, we have | pi |< 1. So we obtain the
following system

y(1)n+1 =
2y(2)n

(
y(2)n−2

) 1
3
+2(

y(1)n−1

) 1
2

, y(2)n+1 =

1
2 y(1)n

(
y(1)n−2

) 1
2
+3(

y(2)n−1

) 1
3

, n ∈ N0 . (4.1)

The behavior of the solution of system (4.1) is represented in the figure (1).

FIGURE 1. The plot of system (4.1) with S = 1 and | pi |< 1

Example 2. Let k = 2, a1 = 1,a2 =
2
3
,b1 = 2,b2 = 3, p1 =

1
2

and p2 =
1
3
, and the

initial values y(1)−2 = 4, y(1)−1 = 4, y(1)0 = 3, y(2)−2 = 8, y(2)−1 = 8, y(2)0 = 6 in system (1.1),
then we obtain that S < 1, and since, for i = 1,2, we have | pi |< 1. So we obtain the
following system

y(1)n+1 =
y(2)n

(
y(2)n−2

) 1
3
+2(

y(1)n−1

) 1
2

, y(2)n+1 =

2
3 y(1)n

(
y(1)n−2

) 1
2
+3(

y(2)n−1

) 1
3

, n ∈ N0 . (4.2)

The equilibrium (y(1),y(1),y(1),y(2),y(2),y(2)) =
(

15
2
3 ,15

2
3 ,15

2
3 ,13

3
4 ,13

3
4 ,13

3
4

)
is

globally attractive (see Figure (2), Theorem (2)).

Example 3. Let k = 6, ai = bi =
1
2

, for i = 1,2, . . . ,6 and p1 =
1
2
, p2 =

1
2
, p3 =

3
5
,

p4 =
9
10

, p5 =
−7
10

, p6 =
4
5
, and the initial values y(1)−2 = 1, y(1)−1 = 2, y(1)0 = 3,
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FIGURE 2. The plot of system (4.2) with S < 1 and | pi |< 1

y(2)−2 = 4, y(2)−1 = 5, y(2)0 = 6, y(3)−2 = 2, y(3)−1 = 3, y(3)0 = 1, y(4)−2 = 2, y(4)−1 = 2, y(4)0 = 3,

y(5)−2 = 3, y(5)−1 = 2, y(5)0 = 2, y(6)−2 = 4, y(6)−1 = 2, y(6)0 = 3 in system (1.1), then we ob-
tain that S < 1, and since, for i = 1,2, . . .6, we have | pi |< 1. Then the equilibrium
(y(1),y(1),y(1), . . . ,y(6),y(6),y(6)) = (1,1,1, . . . ,1,1,1) is globally attractive (see Fig-
ure (3), Theorem (2)).

FIGURE 3. The plot of system (1.1) with S < 1 and | pi |< 1



ON A MULTIDIMENSIONAL CLOSE-TO-CYCLIC 289

Acknowledgements

The authors would like to thank sincerely thank Professor Nouressadat Touafek
for his valuable contribution in reviewing and refining the results of this paper. Your
insights and corrections have significantly improved the quality of the work, and we
deeply appreciate your time and effort.

REFERENCES

[1] Y. Akrour, N. Touafek, and Y. Halim, “On a system of difference equations of second or-
der solved in closed-form.” Miskolc Math. Notes, vol. 20, no. 2, pp. 701–717, 2019, doi:
10.18514/MMN.2019.2923.

[2] A. Allam, Y. Halim, and A. Khelifa, “Convergence of solutions of a system of recurrence equa-
tions,” J. Appl. Math. Comput., vol. 69, no. 2, pp. 1659–1677, 2023, doi: 10.1007/s12190-022-
01807-x.

[3] E. M. Elsayed, “Solution for systems of difference equations of rational form of order two,” Comp.
Appl. Math., vol. 33, no. 3, pp. 751–765, 2014, doi: 10.1007/s40314-013-0092-9.

[4] E. M. Elsayed and T. F. Ibrahim, “Periodicity and solutions for some systems of nonlinear ra-
tional difference equations,” Hacet. J. Math. Stat., vol. 44, no. 6, pp. 1361–1390, 2015, doi:
10.15672/HJMS.2015449653.
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